
SOKKIA

CX-102LN CX-105LN

超远程免棱镜测距 电子全站仪

2级激光产品

售后在线注册

使用说明书

1007670-01-A

使用的锂离子电池报废时 必须回收或妥善处置

SOKKIA

CX-102LN CX-105LN

超远程无棱镜测距 电子全站仪

2 级激光产品

使用说明书

承蒙选购索佳CX-102LN/105LN电子全站仪。

操作仪器前请仔细阅读本使用说明书并参阅"36. 标准配置与选购附件"以确认所有附件是否齐全。为便于阅读,说明书中部分插图做了简化处理。

CX全站仪具有与计算机进行数据交换的功能,并可接收和执行来自计算机的操作指令,详情可参阅《通讯操作手册》或向索佳客服中心咨询。

为了改进产品,仪器外观、技术指标和说明书内容如有变更而有别于本说明书,恕 不另行通知,敬请谅解。

本说明书受版权保护, TOPCON 集团保留所有权利。

说明书阅读方法

符号约定

本说明书使用下列符号和约定:

₩ . 表示操作前应阅读的注意事项和重要内容。

: 表示参阅章节及其名称。

Note . 表示补充说明。

:表示一特别术语或操作的说明。

[软键]等:表示所显示的软键内容。

{按键}等:表示 CX 操作面板上的按键。

<界面>等:表示屏幕界面名称。

本说明书风格说明

• 除特别说明外, 说明书中的 "CX"表示 CX-102LN/105LN。

- 说明书中所用显示界面均源于 CX-102LN 仪器。
- 说明书界面中所采用的软键功能菜单均为出厂时的默认值, 软键功能菜单可能会因用户 重新定义而发生改变。
 - **灯** 软键: "4.1 仪器部件名称", 软键自定义: "33.3 键功能定义"
- 在阅读各测量操作章节之前,请先阅读"5.基本操作"的内容以了解仪器的基本操作方 決。
- 仪器参数设置项的选取和数据的输入方法请参阅"5.1键盘操作"。
- 说明书中介绍的示例均为"重复测量"模式下的操作程序。当选取其他测量模式时,有 关操作程序信息将随 Note 给出。
- 表示该功能或选项为部分产品所仅有,如需了解相关细节请向索佳客服中心咨询。
- KODAK 为柯达公司注册商标。
- Blutooth 为Bluetooth SIG. Inc. 公司注册商标。
- 本说明书中涉及的其他公司或产品名称均为相应公司的注册商标。

1. 安全操作须知	5
3. 激光安全信息	
	8
4. 产品简介	
4.1仪器部件名称	
4. 2模式结构图	
4.3蓝牙无线通讯	14
5. 基本操作	16
5.1 键盘操作	16
5.2 显示信息	19
5.3 星键模式	22
6. 电池的使用	23
6.1 电池充电	23
6.2 电池装卸	25
7. 架设仪器	26
7.1 仪器对中	26
前准备 7.2 仪器整平	28
8. 调焦与照准	30
9. 开机与关机	31
10. 连接外部设备	33
10.1 蓝牙通讯设置	33
10.2 蓝牙设备连接	36
10.3 蓝牙通讯测量	39
10.4 蓝牙数据通讯	39
	40
	41
11.1置零角度测量	41
11.2置盘角度测量	42
11.3角度测量数据输出	44
上实施 12. 距离测量	
12. 1测距信号检测	
12. 2角度距离测量	
12. 3测量数据回显	
12. 4距离测量数据输出	
12.5坐标测量数据输出	
12. 6悬高测量	

13. 设立测站53
13.1输入测站和后视方位角数据53
13.2自由设站59
14. 坐标测量68
15. 放样测量71
15.1坐标放样测量72
15. 2角度距离放样测量74
15.3悬高放样测量76
16. 直线放样测量78
16.1定义基线78
16.2直线点放样81
16.3直线线放样83
17. 弧线放样测量85
17.1定义弧线85
17.2弧线放样91
18. 点投影 94
18.1定义基线94
18.2点投影95
19. 地形测量 96
19.1测量设置97
19. 2地形测量99
20. 偏心测量102
20.1单距偏心测量102
20.2角度偏心测量104
20.3双距偏心测量106
20.4平面偏心测量109
20.5圆柱偏心测量111
21. 对边测量 113
21.1多点间距离测量113
21.2改变起始点117
22. 面积计算118
23. 交会计算 122
24. 导线平差 125
25. 线路计算131
25.1设立测站131

测量实施

	25.2直线计算132
	25.3圆曲线计算134
	25.4回旋曲线计算136
	25.5抛物曲线计算144
	25.6三点计算法149
	25.7转角计算法152
	25.8整体计算法155
	26. 横断面测量169
	27. 点到线测量173
测量实施	28. 记录数据176
	28.1记录测站数据176
	28.2记录定向数据178
	28.3记录角度数据180
	28.4记录距离数据181
	28.5记录坐标数据182
	28.6记录距离和坐标数据183
	28.7记录注记数据184
	28.8数据查阅185
	28.9数据删除187
	29. 作业选取与删除188
	29.1作业选取188
	29.2作业删除190
	30. 已知数据输入与删除191
	30.1已知坐标输入与删除191
	30.2已知坐标查阅194
	30.3代码输入与删除195
数据管理	30.4代码查阅197
	31. 作业数据输出198
	31.1向计算机输出作业数据198
	32. 外存储器的使用201
	32.1U盘插入201
	32.2数据类型选取202
	32.3U盘数据下载202
	32.4U盘数据上传205
	32.5文件查阅与编辑207
	32.6U盘格式化208

	1	
	33. 仪器参数设置	
	33.1仪器参数设置	209
参数设置	33. 2测距参数设置	
	33.3键功能定义	220
	33.4密码设置	223
	33.5仪器初始化	224
	34. 错误信息	225
	35. 仪器检校	230
	35.1 圆水准器检校	230
A.H. VIII &2. 124	35.2 倾斜传感器零点误差检校	231
错误信息	35.3 视准误差测定	233
与	35.4 分划板检校	233
仪器检校	35.5 指向光轴检校	235
	35.6 光学对中器检校	236
	35.7 距离加常数测定	238
	35.8 测距光轴检校	
	35.9 激光对中器检校	
] 36. 标准配置与选购附件	
	36.1 标准配置	
	36.2 选购附件	
	36.3 棱镜系统	
其它	36.4 电源系统	
	37. 技术指标	
	38. 附加说明	
	38.1双盘位照准设置垂直度盘指标	
	38.2大气折光与地球曲率改正	
	」 39. 管理法规	259

1. 安全操作须知

为确保产品的安全使用,避免造成人身伤害或财产损失,本说明书使用"警告"或"注意"来提示操作仪器时应遵循的条款。在阅读本说明书主要内容之前,请先弄清这些提示的具体含义。

提示含义

警告 忽视本提示而出现错误操作,可能会导致操作人员的重伤或死亡。

注意 忽视本提示而出现错误操作,可能会造成操作人员的受伤或财产损失。

- △ 此符号用于需特别注意条款的提示,有关细节说明随符号给出。
- 此符号用于禁止条款的提示,有关细节说明随符号给出。
- 此符号用于必须遵循条款的提示,有关细节说明随符号给出。

一般情况

⚠ 警告

- 严禁在高粉尘、无良好通风设备或靠近易燃物品环境下使用仪器,以免引发爆炸事故。
- 🚫 严禁自行拆卸和重装仪器,以免引起火灾、触电或辐射伤害等意外事故。
- 严禁直接用望远镜观察太阳,以免造成眼睛失明。
- 严禁用望远镜观察经棱镜或其它高反射物反射的太阳光,以免损伤视力。
- 直接观察太阳时务必使用阳光滤色镜(选购件)。
- 仪器放入仪器箱后应确认所有锁扣均已扣好,以免搬拿仪器时跌落伤人或造成财产损失。

⚠ 注意

- 禁止坐在仪器箱上,以免滑倒造成人员受伤。
- ◇ 禁止将仪器放置在锁扣、背带或提柄已受损的仪器箱内,以免箱体或仪器跌落造成损伤。
- 禁止挥动或抛甩垂球,以免伤人。
- 确保仪器提柄固定螺丝紧锁,以免提拿时仪器跌落造成人员受伤或仪器受损。
- ❶ 确保固紧三角基座制动控制杆,防止提拿仪器时三角基座跌落造成人员受伤。

电源系统

⚠ 警告

- 严禁将电路短路,以免发热造成火灾事故。
- 充电时严禁在充电器上覆盖布类物,以免影响散热产生火花引发火灾。
- 严禁使用与指定电压不相符的电源,以免造成火灾或触电事故。
- 严禁使用未经指定的电池,避免造成爆炸或火灾事故。
- 🛇 严禁使用已受损的电源线、插头或松脱的插座,以免发生触电或火灾事故。
- 严禁使用指定以外的电源线为电池充电,以免发生火灾事故。
- 使用指定的充电器为电池充电,使用其它充电器会由于电压或电极不符产生火花而引发火灾。
- 严禁使用潮湿的电池或充电器,以免短路而引发火灾。
- 严禁用湿手插拔电源插头,以免造成触电事故。
- 严禁将电池、充电器或电源线用于其它设备或用途,以免引发火灾事故。
- ❷ 严禁给电池和充电器加热或将其扔入火中,以防爆炸伤人。
- 电池存放时可使用绝缘胶带等贴于电池电极处,以防因短路而引发火灾,。
- 严禁对电池或充电器进行拆装、焚烧、加热或短路,以免引发火灾、触电或爆炸事故。

⚠ 注意

● 不要接触电池渗漏出来的液体,以免有害化学物质造成皮肤灼伤或糜烂。

<u>三脚架</u>

⚠ 注意

- 在将仪器架设到三脚架上时,务必固紧三角基座制动控制杆和中心连接螺旋,以免仪器跌落伤人。
- 架设仪器时,务必固紧三脚架的脚螺丝,以防三脚架倒下伤人。
- 搬拿三脚架时严禁将脚架尖对准他人,以免碰伤。
- 架设三脚架时,应注意防止手脚被三脚架脚尖刺伤。
- 搬拿三脚架前务必固紧三脚架脚螺丝,以免三脚架脚滑出伤及他人。

蓝牙无线通讯

⚠ 警告

- 严禁在医院附近使用蓝牙无线通讯,以免引发医疗设备故障。
- 严禁在飞机上使用蓝牙无线通讯,以免造成飞机设备故障,影响飞行安全。
- 严禁在装有自动门、火灾报警器或其它自动控制装置附近使用蓝牙无线通讯,以免仪器电磁波的影响造成设备误操作而引发意外事故。

2. 注意事项

电池充电

- 电池出厂时并未充电,使用前请为电池充足电。电池充电的温度范围为 0~40℃。
- 电池容量的衰减程度与反复充放电次数相关, 电池为易耗品不属保修范围。

蓝牙功能的使用

仪器蓝牙功能内置与否取决于销售地国家或地区的无线通讯法规,具体可咨询当地经销商。

三角基座锁紧螺丝

为防止仪器在三角基座上滑动,三角基座的锁紧螺丝 出厂时处于固紧状态。首次使用仪器时请松开该螺 丝,仪器长途运输前需将该螺丝固紧。

防护性能

当电池仓和外部接口仓护盖、连接端口护套正确关闭后, CX 具有 IP66 级防尘防水性能。

- 确保电池仓护盖、外部接口仓护盖和连接端口护套正确关闭,保持电池仓、连接端口的 干燥与清洁,防止湿气和粉尘进入,否则会造成仪器的损伤。
- 关闭仪器箱之前确保仪器和箱内干燥, 防止仪器锈蚀。
- 严禁用锐器点击仪器扬声器,以免损坏内部防水膜影响防水性能。
- 电池仓或外部接口仓护盖的橡胶密封圈出现裂缝或变形时,应停止使用并及时更换。
- 为确保仪器的防水性能,建议每两年与索佳客服中心联系更换橡胶密封圈。

备份锂电池

• 备份锂电池用于维持 CX 系统日期、时钟的运转和内存数据的保护,正常使用或储存情况下(温度=25℃,湿度=约 50%)的寿命约为 5 年,但也会因使用环境的原因而不足 5 年。

垂直和水平制动

• 旋转仪器照准部或望远镜时,始终保持垂直或水平制动完全松开,以免影响测量精度。

数据备份

• 定期将仪器内存中的数据备份到外部存储器上, 防止数据丢失。

其它

- 测量前要关闭外部接口护盖,以免周围强光进入 USB 端口对测量结果产生不利影响。
- 当仪器从温暖处移到低温处时,仪器内部部件会因遇冷收缩而使按键失灵。如果按键无 法按下,打开电池仓护盖使按键功能恢复正常。为防止此类情况发生,在将仪器移到低 温处前打开连接端口护套。
- 严禁将仪器直接放置在地面上, 以免沙粒和尘土损坏仪器三角基座中心螺孔或螺旋。
- 严禁将望远镜直接照准太阳,观测太阳时要使用阳光滤色镜以保护仪器;仪器使用完后要及时盖上物镜盖。

5 "36.2 选购附件"

- 仪器应避免受到强烈撞击或震动。
- 迁站时务必将仪器从三脚架上取下。
- 取下电池前必须先关闭电源。
- 仪器装箱时先取下电池再按示意图放置。
- 关闭仪器箱前务必确保仪器和箱内干燥,否则密闭的箱体会造成仪器的锈蚀。
- 需要超长时间连续使用或在高湿度等特殊环境下使用仪器时,请向索佳客服中心咨询相 关注意事项。一般而言,特殊环境下使用仪器发生损坏不属产品保修范围。

维护保养

- 仪器装箱前应仔细清檫机体,对镜头部分尤其要小心,首先用镜头刷刷去粉尘,然后用擦拭布清擦干净。
- 显示屏的清擦应使用松软干布,仪器其它部位或仪器箱的清擦应使用中性清洗剂和略潮 松软布,严禁使用酒精、有机溶剂或碱性清洗液擦拭仪器或显示屏以免造成损坏。
- 仪器应存放在干燥、恒温的室内。
- 三脚架有时会发生脚螺旋松动现象, 应注意经常进行检查。
- 如果仪器的转动部位、螺旋或光学部件发生故障,请与索佳客服中心联系。
- 仪器长期不使用时,至少每三个月对仪器进行一次检查。

☞ "35.仪器检校"

- 测量作业时如果仪器被弄湿, 收测后必须彻底擦干仪器。
- 不要用力强行从仪器箱内取出仪器, 仪器取出后应及时将仪器箱关好以防止潮湿。
- 定期对仪器进行检查和校正以确保仪器的测量精度。

产品出口限制

本产品配备的部件、装置、软件或技术受 EAR(出口管理条例)限制,产品出口地到或带入地的国家可能需要获得美国的出口许可。遇到此情况时,您需要办理相关许可手续。
 2013 年 5 月条例规定需要获得许可的国家如下:

朝鲜

伊朗

叙利亚

苏丹

古巴

了解变更信息请登录美国EAR网址: http://www.bis.doc.gov/policiesandregulations/index.htm

电信法规有关产品出口

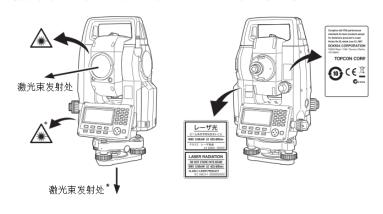
仪器内置的无线通讯模块的使用及其出口必须符合仪器使用地国家的相关电信法规,详细信息请咨询当地经销商。

责任免除

- 仪器用户须严格按说明书的操作要求使用仪器,并对仪器硬件及性能进行定期检查。
- 任何因有意或无意地不当使用仪器而造成的直接、间接后果及利益损失,制造商及其代表处不承担责任。
- 任何因地震、风暴、洪水等自然灾害或火灾、事故或第三者行为及非正常条件下使用仪器而造成的后果及利益损失,制造商及其代表处不承担责任。
- 任何因仪器的使用或无法使用造成的损失(数据改变、资料丢失、利润损失或业务中断),制造商及其代表处不承担责任。
- 任何因仪器用于与使用说明书不相符用途而造成的后果及利益损失,制造商及其代表处不承担责任。
- 任何因不正确操作仪器或与其它产品组合使用而造成的后果及利益损失,制造商及其代表处不承担责任。

3. 激光安全信息

根据 IEC 国际标准, CX 属下列等级激光产品和 LED 产品。


• EDM 装置:

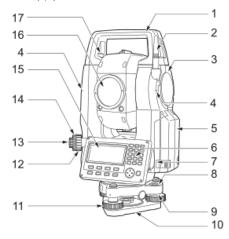
指向激光 **2**级激光产品 测距激光 **1**级激光产品

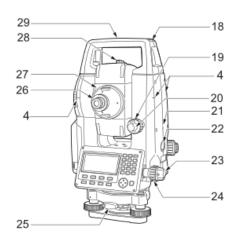
•对中激光器(2) 2级激光产品

⚠ 警告

- 任何不严格按照说明书指定方法操作、使用或调校仪器都可能会导致辐射性伤害。
- 严格遵循说明书中或仪器上标签的安全提示, 确保安全使用本产品。

- *, 仅对选配了激光对中器的仪器(含)
- 严禁将激光束对准他人,避免对眼睛或皮肤造成伤害。
- 禁止直视激光发射源,以免对眼睛造成永久性伤害。
- •禁止盯看激光束,以免对眼睛造成永久性伤害。
- 如果由于上述原因导致眼睛不适, 应及时到医院就诊。


⚠注意


- 出测前应检查激光发射是否正常,此外还应定期对仪器进行检校。
- 不使用仪器时要关闭仪器电源, 卸下电池, 盖上镜头盖。
- 仪器报废后要毁掉其电源,以免激光发射造成伤害。
- 为防止不经意造成的伤害,架设仪器时应使激光束高度避开路人或司机头部高度。
- 严禁将激光束对准镜子、窗户或高反射率的物体面,以防反射的激光束对人造成伤害。
- 在使用激光指向功能完成测距后应及时关闭激光输出,因为即便是中断测距后激光束的 发射仍在继续(打开激光指向功能后,激光束的发射将持续5分钟后才会自动关闭,但 在不显示目标类型符号的测量模式界面下,激光束的发射不会自动关闭)。

4. 产品简介

4.1 仪器部件名称

● CX 系列

仅对CX-102LN机型

- 1 提柄
- 2 蓝牙天线
- 3 外部接口仓(USB 插口)
- 4 仪器高标志
- 5 电池仓护盖
- 6 操作面板
- 7 串口与外部电源共用接口
- (仅对 CX-105LN 机型)
- 8 圆水准器
- 9 圆水准器校正螺丝
- 10 基座底板
- 11 脚螺旋
- 12 光学对中器调焦环
- 13 光学对中器目镜
- 14 光学对中器分划板护盖
- (激光对中器机型无 12 至 14 项)
- 15 显示屏
- 16 望远镜物镜(带激光指向功能)
- 17 提柄固定螺丝
- 18 管式罗盘插槽
- 19 垂直微动手轮
- 20 垂直制动钮
- 21 扬声器
- 22 触发键
- 23 水平制动钮
- 24 水平微动手轮
- 25 三角基座制动控制杆
- 26 望远镜目镜
- 27 望远镜调焦环
- 28 粗照准器
- 29 仪器中心标志

1 粗照准器

粗照准器用于目标方向的粗略照准,照准时旋转仪器至使粗照准器内的小三角对准目标方向。

2 仪器高标志

CX 仪器高度如下:

- · 自三角基座顶面至仪器高标志为 192.5mm。
- 自三角基座(TR-102)底面至仪器高标志为 236mm。

注意其与设立测站时所输入"仪器高"的区别,设立测站时的"仪器高"是指测站地面点至仪器高标志的距离。

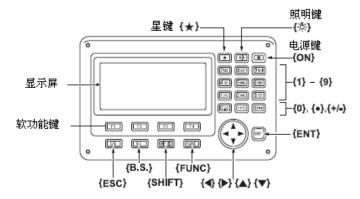
🏿 触发键

测量模式界面下显示有[观测]或[停止]功能时,按下该键可启动或停止测量,在显示有[测存]功能时,按下该键可自动完成测量和记录。

1 激光指向功能

可见红色激光束可以在不用望远镜的情况下直接进行目标照准,在光线不足的环境下 尤其方便。

- 激光指向仅用于目标点的近似照准,与用望远镜的精确照准会略有偏差。
 - ☞ 激光指向检校: "35.5 指向光轴检校"
- 测距进行过程中,激光指向处于闪烁状态。
- 激光指向的光斑在望远镜视场中无法看到,只能用肉眼直接观察。
- 激光指向光斑可视距离取决于环境条件和观测员的视力。
- 激光指向功能的使用会缩短电池的工作时间。

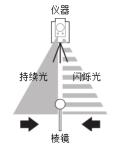

⋒ 角度自校准系统(IACS)(仅对 CX-102LN 机型)

角度自校准系统是索佳独创的一项革命性技术,可使仪器自主进行角度高精度校准, 免除了角度校准时需要另一仪器作为参照标准的通常做法,将测量精度的稳定性和可 靠性提升到一个新的高度。

▶ 田户无法自己讲行仪器的角度自校准,需送索佳客服中心进行。

操作面板

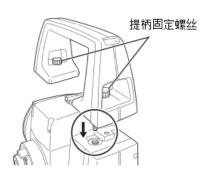
15.1 键盘操作"


导向光

◎ 导向光

使用导向光可以提高放样测量的作业效率。导向光由持续和闪烁发射的两组红色光组成,司尺人员可以通过看到的导向光方便快捷地识别和确定仪器望远镜的照准方向。 导向光功能的使用会缩短电池的工作时间。

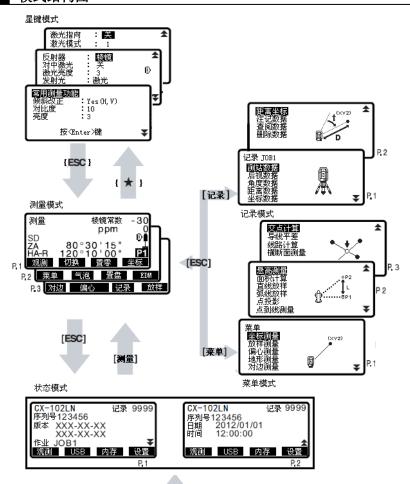
导向光发射孔位于望远镜左右侧,从司尺员方向看去,仪器处于左盘位时,左右侧分别发射的是持续光和闪烁光。导向光的有效工作距离为100m,使用效果与环境条件和司尺员的视力相关。

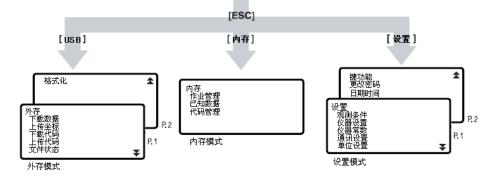


4.产品简介

司尺员通过观察左右导向光的状态来判断棱镜应移动的方向,若持续光亮度强则向右移, 若闪烁光亮度强则向左移,直至两种光亮度相当时即为仪器望远镜的照准方向。

提柄


提柄可从仪器上卸下,卸下前先将提柄固定螺丝旋开。



•卸下提柄时应抓住提柄两端垂直向上取出,如果仅用一只手抓住提柄一端斜着提起可能 会对连接部件造成损坏。

4.2 模式结构图

4.3 蓝牙无线通讯

- 蓝牙无线通讯功能仅对内置了蓝牙模块的机型有效。
- 蓝牙无线通讯技术的使用必须遵从仪器使用地国家的无线通讯管理法规,具体事宜可向 当地索住客服中心咨询。

17 "39.管理法规"

- TOPCON 集团对使用仪器蓝牙通讯功能传输的内容及产生的后果不承担责任。因此,需要进行重要数据通讯时应预先测试以确保通讯的正常。
- 不要向任何第三方泄露通讯的内容。

蓝牙通讯时的无线电干扰

CX 蓝牙通讯使用 2.4GHz 频段, 这与下列设备所使用频段相同:

- 工业、科研、医疗(ISM)设备,如微波设备、心脏起搏器等。
- 工厂生产线使用的便携式无线通讯设备(需授权)。
- 便携式小功率无线通讯设备(免授权)。
- IEEE802.11b 或 IEEE802.11g 标准无线局域网设备。

上述设备所使用的频段与蓝牙通讯使用的频段相同,因此在这些设备附近使用 CX 时会形成干扰,造成通讯速度变慢或通讯失败。

虽然 CX 的使用不需要取得无线诵讯的授权, 但在进行蓝牙诵讯时需注意以下事项:

- -- 工业、科研、医疗(ISM)设备,如微波设备、心脏起搏器等。
- 通讯前检查确认仪器附近是否存在上述无线通讯设备,不要在其附近进行通讯操作。
- 当仪器对便携式无线通讯设备造成干扰时应立即中断连接,采取措施防止干扰进一步加剧(例如采用电缆连接通讯方式)。
- 出现仪器对小功率无线通讯设备造成干扰时,请与索佳客服中心联系。
- -- 在IEEE802.11b或IEEE802.11g标准无线局域网设备附近使用CX时,关闭所有不使用的设备。
- 干扰可能会造成通讯速度变慢或中断,此时应关闭所有不使用的设备。
- 严禁在微波设备附近使用 CX
- 微波设备会对无线通讯造成严重干扰,使通讯中断,通讯时仪器应距离微波炉3米以上。
- 使用CX时, 尽可能远离电视机和收音机
- 虽然电视机和收音机采用与蓝牙通讯不同的频段,近距离使用时对蓝牙通讯无明显影响,但蓝牙通讯时会对电视机和收音机的声音、图象产生噪声信号,影响其性能。

通讯操作须知

- -- 最佳通讯效果
- 蓝牙无线通讯的有效距离会因不通视或因所用的 PDA、计算机设备等原因会变短。木质、玻璃或塑料等材料并不会阻断蓝牙通讯的进行,但会缩短有效通讯距离。此外,带金属框的木板、玻璃或塑料、金属板、金属箔、隔热材料以及金属粉涂层都会影响蓝牙通讯,钢筋混凝土、金属会阻断蓝牙通讯。
- 仪器防雨时要使用塑料仪器罩,不要使用金属材料仪器罩。
- 蓝牙天线的方向会影响其有效通讯范围。
- -- 大气条件对通讯的影响
- CX 发射的无线电波会被雨水、雾、人体湿气等吸收或使之发散,从而导致有效通讯距离变短。此外,在林地区域或靠近地面进行无线通讯时会因信号强度损失较大而使通讯距离变短,建议蓝牙通讯在尽可能高的位置上进行。

1

• TOPCON 集团无法确保市场上销售的蓝牙设备都与 CX 相兼容。

5. 基本操作

5.1 键盘操作

在阅读后面各测量相关章节前请先熟悉本章介绍的基本操作内容。

▶ 操作面板按键位置: "4.1 仪器部件名称"

・开机与关机

{ON}	开机
{ON} (按住约 1 秒钟)	关机

• 背光打开与关闭

{≒\$}	打开或关闭屏幕、	分划板和键盘背光
-------	----------	----------

·目标类型切换

目标类型的切换只能在显示有目标类型符号(例如)的界面下进行。

{SHIFT} Ø)	日怀尖型仕悛镜、	尤俊镜和匹桂尤俊镜间切换	
了 日标米刑符早显示	."50 思元信自" 昆	显键模式下日标米刑切换,"53 思键模式"	

目标类型符号显示: "5.2 显示信息", 星键模式下目标类型切换: "5.3 星键模式", 设置模式下目标类型切换: "33.2 测距参数设置"

口上坐刑去社位 工社位和工社位的口机

· 指向光或导向光打开与关闭

{冷}(按住至听到一声响)	打开或关闭指向光或导向光

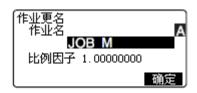
广指向光或导向光选取:"33.2 测距参数设置"

Note

• 指向光或导向光打开后, 光束将持续发射 5 分钟后自动关闭, 但在状态界面和无目标类型符号显示的测量模式界面下, 光束的发射不会自动关闭。

• 软键操作

软键对应功能显示在屏幕底行。


{F1}~{F4}	选取软键对应功能
{FUNC}	软键功能菜单页面切换

• 字母数字输入

{SHIFT}	在数字与字母输入模式间进行切换
(0) (0)	在数字输入模式下输入按键上的数字
{0}∼{9 }	在字母输入模式下顺序输入按键上方的字符
()/(+)	在数字输入模式下输入小数点或正负号
{.}/{±}	在字母输入模式下顺序输入按键上方的字符
{◀}/{▶}	左、右移动光标或改变选项内容
{ESC}	取消输入的数据
{B.S.}	删除左边字符
{ENT}	确认输入

示例: 在作业名栏内输入作业名"JOB M"

- 1. 按{SHIFT}键切换至字母输入模式(屏幕右侧显示"A"表示字母输入模式。
- 2. 按{4}键显示字母"J"。
- 3. 按三次{**5**}键显示字母"O"。
- 4. 按两次{**7**}键显示字母"B"。
- 5. 按两次{▶}键显示一空格。
- 6. 按{5}键显示字母"M"。
- 7. 按{ENT}键完成输入。

5.基本操作

• 选取选项

{▲}/{▼}	上、下移动光标或变换选项
{◀}/{▶}	左、右移动光标或改变选项内容
{ENT}	确认选项

示例:选取目标类型

- 1. 在测量模式第 2 页菜单下按{EDM}键。
- 2. 按{▲}或{▼}键将光标移至"反射器"。
- 3. 利用{◀}或{▶}键选取目标类型选项 "棱镜"、"反射片"或"无棱镜"。
- 4. 按{ENT}或{▼}键将光标移至下一选项继续选取。

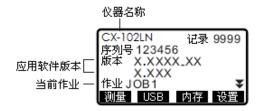
EDM

测距模式:单次精测 反射器 : <mark>棱镜</mark>

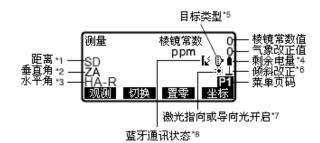
楼镜常数: 0 发射光 : 指向光 **⊕** ▼

• 模式切换

[*]	从测量模式切换至星键模式
[设置]	从状态模式切换至设置模式
[测量]	从状态模式切换至测量模式
[USB]	从状态模式切换至外存模式
[内存]	从状态模式切换至内存模式
{ESC}	退出当前模式返回状态模式


"4.2 模式结构图"

・其他操作


{ESC}	返回前一显示界面

5.2 显示信息

状态模式界面

测量模式界面

测量界面

输入界面

*1 距离显示

距离显示方式切换:"33.1 仪器参数设置"

SD: 斜距

HD: 平距

VD: 高差

5.基本操作

*2 垂直角显示

重直角显示方式切换:"33.1 仪器参数设置"

ZA: 天顶距(Z=0)

VA: 高度角 (H=0 或 H=0±90)

按[ZA/%]键可将垂直角切换为坡度显示。

*3 水平角显示

HA-R: 右角(顺时针角)

HA-L: 左角(逆时针角)

按[右/左]键可切换水平角显示模式。

*1,2,3

按**[切换]**键可将观测值显示方式在"SD, ZA, HA-R"(斜距、垂直角、水平角)和 "SD, HD, VD"(斜距、平距、高差)间进行切换。

*4 剩余电量显示(温度=25℃,测距时)

使用 BDC 70 电池	使用 外部电池	刺余电量
î	•	3级,电量满
•	₫	2级,电量充足
٥	ሷ	1级,电量过半
0	Ó	0级,电量少许 需充电
== (每隔3秒	钟显示此符号)	电量已耗尽, 停止测量,立即充电

10 "6.1 电池充电"

*5 目标类型显示

. 棱镜

→』: 无棱镜

┧: 远程无棱镜

按{SHIFT}键可对目标类型进行切换,此功能仅在有目标类型符号显示界面下有效。

*6 倾斜改正状态显示

显示该符号时表示对垂直角和水平角自动进行倾斜补偿功能已打开。

€ 倾斜补偿设置: "33.1 仪器参数设置"

*7 指向光或导向光状态显示

作用 指向光或导向光选取: "33.2 测距参数设置",

指向光或导向光打开或关闭: "5.1 键盘操作"

: 指向光已打开。: 导向光已打开。

*8 蓝牙通讯状态显示

:连接已建立(从设备)

: 连接已建立(主设备)

(闪动):连接建立中(从设备)

(闪动):连接建立中(主设备)

(闪动):等待中

★ (闪动) : 连接断开中(从设备)

(闪动):连接断开中(主设备)

: 蓝牙设备已关闭(从设备)

: 蓝牙设备已关闭(主设备)

*9 测距激光束发射时显示

*10 输入模式显示

A: 大写字母输入。

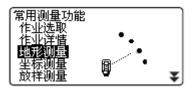
小写字母输入。

1. 数字输入。

5.3 星键模式

在测量模式界面下按{★}键便可进入星键模式菜单界面。

在星键模式下可对常用仪器参数进行设置,并可在<常用测量功能>菜单界面下启动常用测量程序。





星键模式下可进行下列设置和操作:

1. 进入常用测量功能菜单界面。

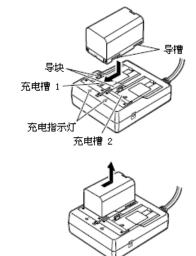
- 2. 倾斜补偿功能的打开或关闭。
- 3. 显示屏对比度设置 (0~15 级)。
- 4. 分划板背光亮度设置(0~5级)。
- 5. 目标类型选取([棱镜]、[无棱镜]或[远程无棱镜])。
- 6. 激光对中器的打开或关闭(仅对配置激光对中器的仪器)。
- 7. 对中激光亮度设置(仅对配置激光对中器的仪器)。
- 8. 发射光类型设置(指向光或导向光)。
- 9. 发射光的打开或关闭。
- 10. 指向光发射方式设置(1: 常亮, 2: 闪亮)。
- * 星键模式只能在测量模式界面下进入。

6. 电池的使用

6.1 电池充电

电池在出厂时并未充电,使用前请对电池充电。

- 充电器在充电时发热属正常现象。
- 不要将指定电池外的其他电池用干仪器。
- 充电器专为室内环境设计,不要在室外环境下使用。
- 充电应在指定充电温度范围内进行, 否则即使充电指示灯闪动也无法给电池充电。
- 刚充好电的电池不要再次立即充电,否则会影响电池的性能。
- 充电完成后应将电池从充电器取出。
- 不使用充电器时应断开其电源。
- 电池应按下表限定的温度范围存储在干燥的室内。长期不使用时,为保证电池性能应至 少每半年对电池充电一次。


存储期	存储温度范围
1 星期以内	-20 ∼ 50°C
1星期~1个月	-20 ∼ 45°C
1个月~6个月	-20 ∼ 40°C
6个月~1年	-20 ∼ 35°C

• 充电电池通过化学反应获得电能,具有有限的使用寿命。电池长时间储存即使不使用,电池电量也会随时间而减少。如果正确地对电池充了电而工作时间却很短,说明需要更换新电池了。

电池充电步骤

- 1. 将电源电缆与 CDC68A 充电器连接好后插 入电源插座中。
- 将 BDC70 电池上的导槽对准充电器的导 块后沿箭头方向推入电池。
 充电指示灯闪动表示开始充电。

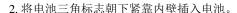
3. 完成充电大约需要 5.5 小时的时间(25℃ 温度环境下),充电指示灯不闪动表示充电 完成。

4. 取出电池,拔下电源插头。

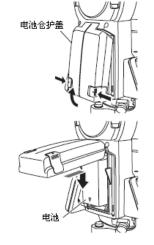
Note

- 充电槽 1、2: 充电器对先装入的电池进行充电,当装入两块电池时,充电器首先对充电槽 1 的电池充电,然后再对充电槽 2 的电池充电。
- 充电指示灯: 充电温度超出指定范围或电池插入不正确时, 充电指示灯处于关闭状态, 除此之外若出现充电指示灯不亮的情况请与索佳客服中心联系。
- 充电时间 : 温度为 25℃时 BDC70 电池充电时间约为 5.5 小时,当温度过高或更低时充电时间会延长。

6.2 电池装卸


电池装入仪器使用前需充足电。

- 仪器标配使用的是 BDC70 电池。
- 卸下电池前务必先关闭电源。
- 在装入或卸下电池时应注意防止水滴或粉尘进入主机内。
- 仪器的防水性能仅在电池仓护盖、外部接口仓护盖关闭以及串口护套套上时才能得到确保。在有水滴或其他液体喷洒环境下作业时请务必正确关闭护盖和护套。


电池装入步骤

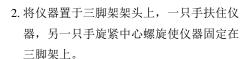
1. 按下电池仓护盖两侧的解锁钮,向外打开 护盖。

- 电池的不正确插入会造成仪器或电极的损坏。
- 3. 关闭电池仓护盖至听到咔嗒声响。

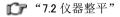
电池卸下步骤

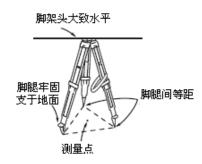
- 1. 按下电池仓护盖两侧的解锁钮,向外打开 护盖。
- 2. 将电池朝上拔出后取下。
- 3. 关闭电池仓护盖至听到咔嗒声响。

7. 架设仪器



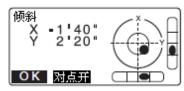
• 整平仪器前应装上电池, 在整平仪器后再装上电池会使仪器发生微小的倾斜。


7.1 仪器对中


光学对中步骤

1. 使三脚架腿间等距,三脚架架头位于测量 点正上方并近似水平,三脚架腿牢固地支 撑于地面上。

- 3. 通过光学对中器目镜观察,旋转光学对中器目镜至使十字丝最清晰,再旋转光学对中器调焦环至使地面测量点最清晰。
- 4. 调节脚螺旋使地面测点位于光学对中器十 字丝中心。
- 5. 继续仪器整平步骤。

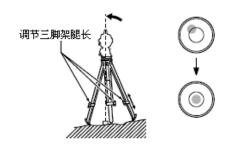


激光对中步骤(2)

- 1. 架设脚架并将仪器固定在三脚架上。
 - "光学对中步骤"中步骤1和2
- 2. 按{ON}键开机。
 - "9.开机与关机"
 - 屏幕上显示图形气泡。
- 3. 按[对点开]键打开仪器底部的对中激光。
- 4. 按{◀}或{▶}键调节激光亮度。

- 5. 调整脚架上的仪器位置至使对中激光光斑 中心对准测量点中心。
- 6. 按**[对点关]**键关闭对中激光。 也可按**{ESC}**键返回上一界面,此时对中 激光自动关闭。
- 7. 继续仪器整平步骤。
 - **一** "7.2 仪器整平"

Note

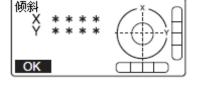

• 白天作业时,对中激光光斑的可视度会受阳光照射的影响,此时可用遮挡阳光的方式来提高可视度。

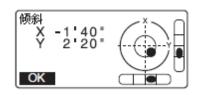
7.2 仪器整平

仪器整平步骤

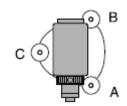
- 1. 完成仪器对中步骤。
 - 17.1 仪器对中"
- 缩短距气泡最近的三脚架腿或伸长距气泡 最远的三脚架腿,再调节另一三脚架腿使 圆水准器气泡居中。

旋转仪器脚螺旋使圆水准器气泡精确居 中。




- 3. 按{ON}键开机。
 - "9.开机与关机"
 - 屏幕上显示图形气泡。
 - •"●"代表图形水准器的圆气泡,图形水准器的内、外圆倾角范围分别为±4′和 ±6′,X、Y方向上的倾角值同时显示 在屏幕上。
 - 当仪器倾角超出倾斜传感器的探测范围时,屏幕上不显示圆气泡"●",此时可通过整平仪器来使圆气泡"●"显示。

Note


- 在仪器未整平的情况下启动测量程序,屏幕上将显示出图形水准器。
- 4. 调整三角架腿长使圆气泡居中。

5. 转动仪器照准部,使望远镜平行于脚螺旋 A、B 连线后固紧水平制动钮。

- 6. 旋转脚螺旋 A、B 使望远镜纵向倾角值 X 为 "0",再旋转脚螺旋 C 使望远镜横向倾角值 Y 为 "0"。
- 稍许松开中心螺旋,通过光学对中器目镜 边观察边滑动仪器至使十字丝中心精确对 准测量点中心,然后重新固紧中心螺旋。
 - 采用激光对中时,再次打开对中激光, 检查激光光斑与测量点中心重合程度。 激光对中步骤 (2)
- 8. 确认图形水准器气泡已居中,如不从步骤
- 6 开始重新整平仪器。

9. 按{OK}键结束仪器整平进入测量模式。

29

8. 调焦与照准

- 照准目标时,如有强烈阳光直接进入物镜可能会造成仪器功能故障,此时应使用物镜遮光罩。
- 进行不同盘位观测时,应使用十字丝同一部位照准目标。

调焦和照准步骤

1. 目镜对焦

将望远镜对着一明亮无地物的背景,把目镜顺时针方向旋到底,再逆时针方向慢慢旋转至使十字丝成像最清晰。 对于同一观测员而言,目镜对焦不需要经

2. 目标粗照准

常进行。

松开垂直和水平制动钮,用粗照准器使仪器大致对准目标方向,在目标进入望远镜 视场后固紧两制动钮。

3. 物镜对焦和精确照准

旋转望远镜调焦环至使目标成像最清晰。 旋转水平和垂直微动手轮使十字丝中心精 确对准目标中心。照准时,微动手轮的最 后旋转方向都应是旋进方向。

4. 消除视差

再次旋转望远镜调焦环进行对焦至使目标 成像与十字丝间不存在视差。

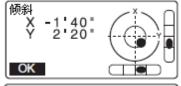
🔟 消除视差

当测量员眼睛在目镜前稍微移动时,如果目标成像与十字丝间出现微小的相对偏差称为视差。测量时视差的存在会导致读数误差,视差可以通过正确对焦来消除。

9. 开机与关机

🕝 手工设置垂直度盘指标:"33.1 仪器参数设置";密码设置与更改:"33.4 密码设置"

开机步骤

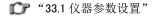

1. 按{ON}键开机。

开机后仪器首先进行自检。

如果设置了密码, 仪器显示密码输入界面, 输入密码后按{ENT}键。

屏幕显示图形水准器界面,在使图形水准器气泡居中整平好仪器后按{**OK**}键进入测量模式界面。

- 如果参数设置中的"手设竖盘"设为 "Yes",仪器显示如右图所示界面。
 - **心** 通过盘左、盘右观测设置垂直度盘指标:"38.附加说明"
- ·如果屏幕显示"超出补偿范围",表明仪器尚未正确整平,需重新整平仪器。
 - ▶ 利用图形气泡整平仪器: "7.2 仪器整平"
- 若"仪器设置"中的"恢复功能"选项设置为"开",则开机后屏幕恢复关机前的显示界面(对边测量除外)。
 - **"**33.1 仪器参数设置"
- 在受强风或振动影响的环境下观测使得显示值不稳定时,将"观测条件"设置中的"倾斜改正"项设为"不改正"。
 - **广** "33.1 仪器参数设置"


9.开机与关机

关机步骤

1. 按住{ON}键约一秒钟。

- 当电池电量不足时,电池符号 3 秒钟的间隔闪动显示,此时应立即停止测量,关闭电源和更换电池。
- 为节省电能, CX 会在停止操作一定时间后自动关机,自动关机时间可以在〈仪器设置〉 界面下的"关机方式"设置项中设定。

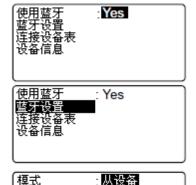
10. 连接外部设备

10.1 蓝牙通讯设置

内置蓝牙模块的 CX 可与其他蓝牙设备进行无线通讯。在设置模式的"通讯设置"下可对蓝牙通讯进行设置。

🕡 蓝牙连接

• 在两个配对的蓝牙设备间进行通讯时,需要将其中一设备设为"主设备",另一设备设为"从设备"。当连接由仪器发起时,将 CX 设为"主设备",当连接由配对蓝牙设备发起时,将 CX 设为"从设备"。与数据采集器连接进行数据采集和记录时,CX 始终设为"从设备"。仪器出厂时其选项仅有"从设备"。


• 恢复出厂默认值后应注意重新进行蓝牙设置。

CX设置为"从设备"步骤

- 1. 在设置模式下选取的"通讯设置"。
- 2. 将"使用蓝牙"项设为"Yes"。
- 3. 选取"蓝牙设置。

Note

• CX 出厂时"模式"的设置选项仅有"从设备"。

: No

: No

认证

和检验

4. 将"认证"设为"Yes"或"No"(设为"Yes"时需要在仪器和配对设备上输入密码)。

Ŧ

- 5. 当"认证"设为"Yes"时,需要在配对设备上输入密码;即使"认证"设为"No",但若配对设备设为需要"认证"时仍需要输入密码。
 - •密码的最大长度为 16 字符,输入密码时以"*"显示,密码的出厂默认值为"0123"。

Note

- 如果使用的是推荐的数据采集器程序,无 需对"模式"、"认证"和"和检验"的缺 省设置进行修改;如果建立连接失败,请 检查 CX 和数据采集器的通讯参数设置。
 - 通讯参数设置:"33.1 仪器参数设置", 指令操作与输出格式:"通讯操作手 册"
- ACK/NAK CR,LF ACK模式

: <mark>No</mark> : No : 标准

6. 按{ENT}键结束设置。

继续蓝牙通讯操作。

CX 与配对蓝牙设备连接: "10.2 蓝牙设备连接"

CX设置为"主设备"步骤

Note

- CX 设为"主设备"之前应先完成配对蓝牙设备的注册,如果已注册直接转至步骤 8。
- 1. 打开配对蓝牙设备电源。

Note

- 记下配对蓝牙设备地址,以便在 CX 进行手工注册时使用。
- 2. 在设置模式下选取的"通讯设置"。
- 3. 将"使用蓝牙"项设为"Yes"。
- 4. 选取"连接设备表"显示蓝牙设备表。 (屏幕显示 CX 出厂时默认蓝牙设备名)

使用蓝牙蓝牙蓝牙设置 医发音表 设备信息

: Yes

在表中选取蓝牙设备。

选取一设备后按[**编辑**]键可更新相关信息。

• 选取一设备后按{ENT}键可查看详细信息。

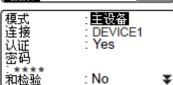
按[**往下**]或[**往上**]键查看上一或下一设备详细信息。

· 按[删除]键可删除所选设备信息。

5. 在"名称"栏内输入"设备名称"。

将光标移至"BD 地址"栏后按[**搜索**]键搜索周围的蓝牙设备。

从搜索到的设备表中选取一地址并按[**OK**] 键将其显示在 "BD 地址"栏内,如果 CX 在 30 秒钟内未搜索到任何蓝牙设备,搜 索将自动终止。


- 采用手工进行蓝牙设备注册时,输入 12 位十六进制数的 BD 地址。
- 6. 按[注册]键完成蓝牙注册。
- 7. 将"模式"设为"主设备"。
- 8. 从注册设备中选取所需设备。
- 9. 将"认证"设为"Yes"或"No"。
 - 蓝牙设备设置步骤3至4
- 10. 按[ENT]键结束设置继续蓝牙通讯。
 - "10.2 蓝牙设备连接"

CX蓝牙信息显示步骤

- 1. 在设置模式下选取"通讯设置"。
- 2. 将"使用蓝牙"项设为"Yes"。

3. 选取"设备信息"。

屏幕显示 CX 的蓝牙信息, 其中的"BD 地址"必须已在蓝牙设备中注册。

使用蓝牙 蓝牙设置 连接设备表 恐器 直息 : Yes

蓝牙编号:

XXXXXXX,XXXXXXX 固件:X.X.X

вրեփtփ:

ABCDEF012345

☑ 蓝牙设备地址

蓝牙设备地址是每一蓝牙设备独有的编号,用于通讯时对蓝牙设备的识别,蓝牙设备地址由 12 位十六进制数(0~9. A~F)组成。

10.2 蓝牙设备连接

- 使用蓝牙通讯功能会增加 CX 的电耗。
- 检查确认配对使用蓝牙设备(数据采集器、计算机或移动电话等)的电源已经打开,且已经完成了相关蓝牙设置。
- 连接数据采集器进行测量和数据记录时,始终将 CX 设为"从设备",蓝牙连接的建立或中断均由设为"主设备"的配对设备启动。

Note

当设置模式的"通讯设置"下的"使用蓝牙"项设为"Yes"后,测量模式界面下的菜单中将显示「❤️▶]或「❤]功能键。

• 软键(测量模式)

软键	连接模式	操作
[#lh]	从设备	进入等待状态
	主设备	建立连接
[]	从设备	取消连接/退出等待状态
	主设备	取消连接/中断连接的建立

• 提示音

(建立或断开连接时)

开始寻呼或等待:短音

连接成功:长音

连接取消或被取消:两声短音

寻呼失败或等待超时: 两声短音

(搜索蓝牙设备时)

发现新设备:短音

搜索完成:长音

• 蓝牙通讯中断一定时间间隔后 CX 的蓝牙功能将自动关闭。

CX为"从设备"时蓝牙连接步骤

Note

- 当 CX 设为"从设备"时,蓝牙设备间的连接由配对蓝牙设备启动。
- 1. 完成蓝牙通讯所需的各项设置。
 - CX 设置为"从设备"步骤:"10.1 蓝 牙通讯设置"
- 2. 检查确认 CX 处于等待状态(蓝牙图标"【" 在闪动) 后在数据采集器启动蓝牙连接。
 - **沙** 数据采集器软件操作手册
 - ☑ 蓝牙图标: "5.2 显示信息"
 - 当 CX 未进入等待状态(显示蓝牙图标 为 " |_×")时,在测量模式第 4 页菜单 下按[**Yll**₁] 键。
 - 一旦建立了连接,显示蓝牙图标变为"【"。

3. 在数据采集器结束蓝牙连接建立。

CX为"主设备"时蓝牙连接步骤

Note

- 当 CX 设为"主设备"时,蓝牙设备间的连接由 CX 启动。
- 1. 完成蓝牙通讯所需的各项设置。
 - CX 设置为"主设备"步骤:"10.1 蓝 牙通讯设置"
- 2. 进入测量模式, CX 开始搜索配对蓝牙设备并建立连接, 一旦连接成功蓝牙图标闪动显示为" ["。
 - ☑ 蓝牙图标: "5.2 显示信息"

10.3 蓝牙通讯测量

具有蓝牙通讯功能的设备(例如数据采集器)可作为配对设备与仪器进行无线通讯,启动 仪器实施测量。

数据采集器蓝牙通讯测量步骤

- 1. 完成蓝牙通讯所需的各项设置。
 - "10.1 蓝牙通讯设置"
- 2. 通过查看测量模式下的蓝牙图标确认当前 的蓝牙连接状态。
 - "10.2 蓝牙设备连接"
- 3. 通过数据采集器启动仪器测量, 仪器作出 回应并开始测量,测量结果显示在屏幕上。

10.4 蓝牙数据通讯

具有蓝牙通讯功能的计算机可作为配对设备与仪器进行无线数据通讯,将已知坐标数据上 传至仪器内存或将仪器内存的作业数据下载至计算机。

已知点数据上传步骤

- 1. 完成蓝牙通讯所需的各项设置。
 - "10.1 蓝牙通讯设置"
- 2. 通过查看测量模式下的蓝牙图标确认当前 的蓝牙连接状态。
 - "10.2 蓝牙设备连接"
- 3. 在内存模式下将已知点坐标数据从计算机 上传至仪器内存。
 - ☞ "30.1 已知坐标输入与删除"
 - 如果连接未建立好,仪器显示如右图所示界面(界面会因模式的不同而异)。

10.连接外部设备

作业数据下载步骤

- 1. 完成蓝牙通讯所需的各项设置。
 - "10.1 蓝牙通讯设置"
- 2. 通过查看测量模式下的蓝牙图标确认当前 的蓝牙连接状态。
 - "10.2 蓝牙设备连接"
- 3. 在内存模式下将仪器内存的作业数据下载 至计算机。
 - ☞ "31.1 向计算机输出作业数据"
 - 如果连接未建立好,仪器显示如右图所示界面(界面会因模式的不同而异)。

通讯输出	
格式	SDR33
发送	12

通讯输出 等待 连接...

10.5 电缆连接通讯

电缆连接设置步骤

- 1. 用通讯电缆通过串口连接 CX 与外部设备。
 - ☑ 通讯电缆: "36.2.选购附件"
- 2. 在设置模式下选取"通讯设置"并设置好通讯参数。
 - "33.1 仪器参数设置"

11. 角度测量

本章将介绍在测量模式下进行角度测量的基本方法。

11.1 置零角度测量

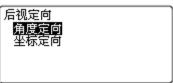
利用[置零]键可将照准方向的水平方向值设置为零,并依此来测定两点间的水平夹角。

两点间角度测量步骤


1. 按图右所示照准目标点 1。

- 2. 在测量模式第一页菜单下按[**置零**]键,在 [**置零**]键闪动时再次按下该键;此时目标 点 1 方向值被设置为"0"。
- 3. 照准目标点 2。

所显示的水平角值 "HA-R" 即为两目标点间的水平夹角。


11.2 置盘角度测量

利用[置盘]键可将照准方向的水平方向值设置为指定值,并依此来进行角度测量。

角度定向测量步骤

- 1. 照准目标点 1。
- 2. 在测量模式第 2 页菜单下按[**置盘**]键并选取"角度定向"。
- 3. 输入已知方向值(125°32'20"时输入 125.3220)后按[OK]键,此时屏幕所显示 水平角值为所输入值。
 - 按[记录]键将完成后视方向设置并将后 视方向值保存至当前作业。

"28.2 记录定向数据"

4. 照准目标点 **2**。

所显示的"HA-R"即为目标点 2 的方向值, 该值与目标点 1 的设置值之差为两目标点 间的水平夹角。

Note

•[锁定]键具有上述同样功能。

旋转照准部使屏幕显示指定角度值后按两次[**锁定**]键锁定,再将望远镜旋转至所需方向 后按**[锁定]**键解锁进行设定。

SD

[**锁定**]键定义: "33.3 键功能定义"

坐标定向测量步骤

- 1. 完成测站点坐标的输入,照准目标点 1。
- 2. 在测量模式第 2 页菜单下按[**置盘**]键并选取"坐标定向"。
- 3. 输入目标点 1 已知坐标值后按**[OK]**键,此时屏幕显示出由测站点坐标和目标点 1 坐标反算的方位角值,按**[YES]**键确认完成定向。
 - 按[记录]键将完成后视方向设置并将后 视方向值保存至当前作业。

"28.2 记录定向数据"

4. 照准目标点 2。

所显示的"HA-R"即为目标点 2 的方位角值,该值与目标点 1 的方位角值之差为两目标点间的水平夹角。

后视定向 角度定向 **丝际定向**

后视坐标

NBS: 100.000 EBS: 100.000 ZBS: <Null>

调取

OK

后视定向 后视读数

ZA 89°59'50" HA-R 125°32'20" 方位角 45°00'00"

记录

NO YES

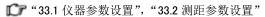
11.8 角度测量数据输出

本节介绍如何实时地将角度测量数据输出到计算机等外部设备的方法。

☑ 蓝牙通讯: "10.连接外部设备",通讯电缆: "36.2 选购附件",通讯指令和输出格式: 《通讯操作手册》

角度测量数据输出步骤

- 1. 将角度输出功能**[角度-S]**或**[角度-T]**定 义至测量模式的软键上。
 - ☑ 键功能定义: "33.3 键功能定义"


Note

- 角度输出功能用于输出下列格式数据: [角度-S]: 索佳 SET 格式角度数据 [角度-T]: 拓普康 GTS 格式角度数据
- 2. 连接 CX 与计算机,使计算机处于等待接收数据状态。
- 3. 照准目标点。
- 4. 按[角度-S]键或[角度-T]键将角度观测值向计算机输出。

12. 距离测量

进行距离测量前应确认已正确完成以下设置:

- 测距模式
- 目标类型
- 棱镜常数改正值
- 气象改正值

⚠注意

在使用激光指向功能完成测距后应及时关闭激光束的输出。因为即使测距已经结束或取消,激光指向功能仍在工作(激光指向功能打开后,激光束的发射将持续5分钟后才会自动关闭。但注意在状态模式界面或测量模式无目标符号显示界面下例外,此时的激光发射不会自动关闭)。

4

- 确保仪器设置的目标类型与实际测量目标类型相符, CX 将根据设置的目标类型自动调 节激光输出强度,并使距离观测值显示范围与之相匹配,如果目标类型设置不正确,无法保证测量结果的精度。
- 仪器物镜上的污渍会影响测量结果的精度,保养时先用镜头刷刷去物镜上的粉尘,再用 专用绒布擦拭干净。
- 无棱镜测距时,如果仪器与所测目标间有如金属板或白色面等高反射率物体,测量结果的精度将受影响。
- 测量现场周围的闪烁光会影响距离测量结果的精度,遇到这种情况时,以多次测量的平均值作为最后结果。

Note

远程无棱镜模式使用注意事项

CX 使无棱镜测程达到了前所未有的高度。远程无棱镜模式测距时,由于距离越远目标物体的反射信号就越弱,测距光斑直径也越大,因此要注意以下事项:

• 测量时间

远程无棱镜模式下,测量时间长短主要取决于目标物体的距离和颜色(反射率)。当距离远、物体表面反射率低时,测量时间会延长。

• 光斑直径

测距光斑的直径会随着距离的增加而变大,测量时要尽可能使测距光束对准目标物体面。

12.距离测量

如果测距光束出现如下图所示的情况时就可能导致错误的测量结果。解决的办法就是调整照准使测距光束尽可能避免落在目标物体表面之外,这可通过设定测距范围 "33.2 测距参数设置")、或者采取偏心测量方法 "20.偏心测量")来实现。

示例 1: 测距光束会落在所测目标前方或后方的物体面上

示例 2: 测距光束落在所测小目标后方的墙体面上

示例 3: 测距光束落在所测目标前方的路面上

• 视线被遮挡

进行远程无棱镜模式测量时,应把仪器设置在视线不易被来往车辆或行人遮挡的位置上,否则将无法获取精确的测量结果。

• 重启测量

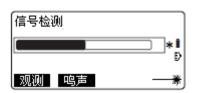
当所测物体表面的反射率变化较大,例如物体颜色从白色转为黑色、或当所测距离远近变化较快等情况时,仪器可能会被短暂性挂起,若在等待一些时间后仍无法获得测量结果的情况下按**[观测]**键重启测量。

12.1 测距信号检测

测距信号检测功能用于检查确认经目标反射回来的信号是否具有足以进行测距的强度,对 远距离测量尤为适用。

 在近距离测量时,有时即使照准稍稍偏离棱镜中心,返回的测距信号仍具有足够的强度 并显示"*"号,但这种情况下的实际测距结果精度并不高,因此测量时必须精确照准棱 镜中心。

测距信号检测步骤


- 将[信号]功能定义至测量模式的软键上。
 [信号]键定义:"33.3 键功能定义"
- 2. 精确照准目标。
- 3. 按{信号}键。

返回信号的强弱以如右图所示计量条形式 显示在屏幕上。

- 计量条中的黑色块越长表示返回信号越强。
- •显示"*"号表示返回信号足以测距。
- •无"*"号显示表示返回信号不足以测距, 需重新照准目标。
- [**鸣声**]和[**关闭**]键用于测距信号强度足以测距时蜂鸣器的打开和关闭。
- •按[观测]键开始距离测量。
- 4. 按{**ESC**}键结束测距信号检测返回测量模式。

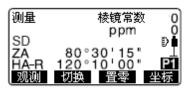
Note

- 当计量条中的黑色块出现持续不变的情况时请与索佳客服中心联系。
- 若 2 分钟内无任何按键操作, 仪器自动返回测量模式。

12.2 角度距离测量

CX可以同时进行角度和距离的测量。

角度距离测量步骤


- 1. 精确照准目标。
- 在测量模式第 1 页菜单下按[观测]键开始 测量。

测量时,测距模式、棱镜常数值、气象改 正值等 EDM 信息闪动显示在屏幕上。

一短声响后,屏幕上显示距离(SD)、垂直角(ZA)和水平角(HA-R)测量值。

•按[**切换**]键可使距离值切换为**叙**距"SD"、 平距"HD"和高差"VD"显示。

Note

- 如果设置了单次测量模式, 仪器在每次测距完成后自动停止测量。
- 如果设置了均值精测模式,则距离测量值按 S-1, S-2, ···.S-9 显示,当测完指定的次数 后距离平均值以 S-A 显示。
- 最后一次测量的角度和距离值被保存在仪器内存中,关机前可以通过按**[回显]**键使之显示。
 - **广** "12.3 测量数据回显"
- 采用跟踪测量模式进行无棱镜测量时,大于 250m 的距离测量值无法显示。

12.3 测量数据回显

最后一次的角度和距离测量值被保存在仪器内存中,关机前可以随时通过按**[回显]**键使之显示。距离、垂直角、水平角和坐标观测值还可切换为平距、高差和斜距观测值显示。

测量数据回显步骤

- 1. 将[回显]功能定义到测量模式的软键上。
 - **[]** [回显]键定义: "33.3 键功能定义"
- 2. 按[回显]键重新显示最新观测值。
 - •按[**切换**]键可使距离值切换为斜距 "SD"、 平距 "HD" 和高差 "VD" 显示。

SD ZA HA-R	525.450m 80°30'10"
ĤÃ-R	120°10'10"
N E Z	-128.045 -226.237
ĮΣ	30.223

3. 按{ESC}键返回测量模式。

12.4 距离测量数据输出

本节介绍如何实时将角度距离测量数据输出到计算机等外部设备。

□ 蓝牙通讯: "10.连接外部设备",通讯电缆: "36.2 选购附件",通讯指令和输出格式: 《通讯操作手册》

距离测量数据输出步骤

- 1. 将[**角距-S**]或[**角距-T**]功能定义至测量模式的软键上。
 - **广** "33.3 键功能定义"

Note

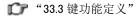
- 距离输出功能用于输出下列格式数据:
 - [角距-S]: 索佳 SET 格式角度距离数据 [角距-T]: 拓普康 GTS 格式角度距离
- 2. 连接 CX 与计算机,使计算机处于等待接 收数据状态。

数据

3. 照准目标点。

12.距离测量

- 4. 按[角距-S]键或[角距-T]键进行角度距 离测量并将观测值向计算机输出。
- 5. 按[停止]键停止测量返回测量模式界面。


12.5 坐标测量数据输出

本节介绍如何实时将坐标测量数据输出到计算机等外部设备。

□ 蓝牙通讯: "10.连接外部设备",通讯电缆: "36.2 选购附件",通讯指令和输出格式: 《通讯操作手册》

坐标测量数据输出步骤

1. 将[**坐标-S**]或[**坐标-T**]功能定义至测量模式的软键上。

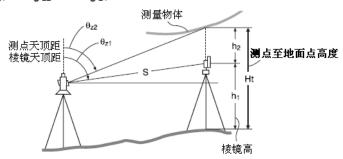
Note

• 坐标输出功能用于输出下列格式数据:

[坐标-S]: 索佳 SET 格式坐标数据

[坐标-T]: 拓普康 GTS 格式坐标数据

- 2. 连接 CX 与计算机,使计算机处于等待接 收数据状态。
- 3. 照准目标点。
- 4. 按[坐标-S]键或[坐标-T]键进行坐标测量并将观测值向计算机输出。


- 当测距模式设为"跟踪测"时,按[坐标-T]键无法输出数据。
- 5. 按[停止]键停止测量返回测量模式界面。

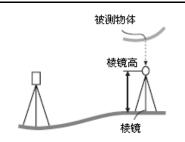
12.6 悬高测量

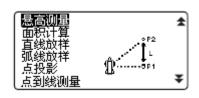
悬高测量功能用于无法在测点上设置棱镜的物体如高压输电线、垂悬电缆、桥梁等高度的 测量。

物体高度的计算公式如下:

Ht =
$$h_1 + h_2$$

 $h2 = S \sin \theta_{z1} \times \cot \theta_{z2} - S \cos \theta_{z1}$

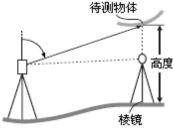




• 坐标数据中的〈Null〉值不同于"0"值,将不参与坐标计算。

悬高测量步骤

- 1. 将棱镜架设在待测物体的正上方或正下 方,用卷尺量取棱镜高。
- 2. 输入棱镜高后精确照准棱镜,在测量模式 第1页菜单下按[**观测**]键测量。 屏幕上显示距离(SD)、垂直角(ZA)和 水平角(HA-R)测量值后按[**停止**]键停止 测量。
- 3. 在测量模式第 2 页菜单下按[**菜单**]键后选取"悬高测量"。


在悬高测量菜单下选取"悬高测量"。

4. 照准物体上的测点,按[**悬高**]键进行悬高 测量,显示的"高度"值即为测点至地面 的高度。

- 5. 按**[停止]**停止测量。
 - [观测]键用于对棱镜重新测量。
 - •[仪器高]键用于仪器高和棱镜高的设置。
 - •[记录]键用于保存悬高测量结果。
 - **17** "28.记录数据"
 - •第2页菜单下的[**显示**]键用于高度和高程的显示切换。
- 6. 按{ESC}结束悬高测量返回测量模式。

悬高测量 测站定向 悬高测量

Note

- 在将[悬高]功能定义至测量模式的软键上后也可按[悬高]键进行悬高测量。
 - **[] [[]]** [**]** [
- •目标高既可以按[仪器高]键后输入,也可在坐标测量中的"测站设置"中输入。
 - ▶ "13.1 输入测站和后视方位角数据"

13. 设立测站

测站的设立可通过输入测站点数据和后视坐标方位角定向等一系列步骤来完成。

输入测站点数据

- 键盘输入
 - ☞"13.1 输入测站和后视方位角数据"步骤 3
- 内存调取
 - ☞"13.1 輸入测站和后视方位角数据"调取内存已知坐标数据步骤
- 后方交会
 - ☞"13.2 自由设站"

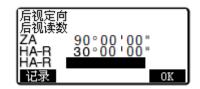
后视定向

- 角度定向
 - ☞"13.1 输入测站和后视方位角数据" 步骤 3
- 坐标定向
 - ☞"13.1 輸入测站和后视方位角数据" 步骤 3
- 后方交会测量定向
 - ☞"13.2 自由设站" 步骤 9

- 测量时,如果需要输出观测值的归算格式数据,在设立测站时务必正确完成测站数据的 记录,否则会导致输出错误的结果。
 - ☑ 归算数据: "31.1 向计算机输出作业数据"

13.1 输入测站和后视方位角数据

实施坐标测量前,需要输入测站点坐标、仪器高、目标高和后视方位角等数据。


测站和后视方位角数据输入步骤

- 1. 用卷尺量取仪器高和目标高。
- 2. 在测量模式菜单下启动所需测量程序(下面操作以按[**坐标**]键进行坐标测量为例)。

- 3. 选取"测站定向"后输入下列数据:
 - (1) 测站点坐标
 - (2) 测站点名
 - (3) 仪器高
 - (4) 代码
 - (5) 测量员
 - (6) 日期
 - (7) 时间
 - (8) 天气
 - (9) 风力
 - (10) 温度
 - (11) 气压
 - (12) 气象改正值
 - 按**[调取]**键可调取当前作业或坐标作 业中的坐标数据。
 - "调取内存已知坐标数据步骤"
 - 按[**后交**]键可通过后方交会测量测定 测站点的坐标。
 - **广** "13.2 自由设站"
- 4. 按[后视角]键进入方位角定向输入界面。
 - •按[后视点]键可进入坐标定向输入界面。 "13.1.1 后视点坐标定向"
- 输入后视方位角(125°32′20″时输入 125.3220)并照准后视方向按[OK]键完成 后视定向。
 - •按[记录]键可保存测站数据、归算数据、 后视数据和角度测量数据。

Note

- 点名最大输入值: 14 字符
- · 仪器高输入范围: -9999.999~9999.999m
- 代码、测量员最大输入值: 16 字符
- 天气: 选项为晴天、阴天、小雨、大雨或雪天
- 风力: 选项为无风、微风、小风、大风或强风
- 温度输入范围: -35~60℃ (每档 1℃)
- 气压输入范围: 500~1400hPa (每档 1hPa) 或 375~1050mmHg (每档 1mmHP)
- 气象改正值输入范围: -499~499ppm

调取内存已知坐标数据

存储在当前作业或坐标作业中的已知坐标数据可以通过[**调取]**功能调用。调用前请确认已在内存模式下将存有所需坐标数据的作业选取为坐标作业。

厂 "30.1 已知坐标输入与删除", "29.1 作业选取"

调取内存已知坐标数据步骤

输入测站数据时按[调取]键。

屏幕显示已知坐标数据表如右图所示。

点 : 存储在当前作业或坐标作业 中的已知点数据。

坐标或测站:存储在当前作业或坐标作业

中的坐标数据。

- 将光标移至所需点号后按{ENT}键读入并显示该点号及其坐标。
 - 按[↑↓..P]键后按{▲}或{▼}键将光标移至上一点或下一点数据。
 - 按[↑ ↓ ...P]键后按{▲}或{▼}键显示上一页或下一页内容。

13.设立测站

- •按[首点]键将光标移至首页的首点。
- 按[末点]键将光标移至末页的末点。
- 按[查找]键进入坐标数据查找界面,通过输入待查找点的点名来查找所需点, 当已知数据较多时搜寻时间会较长。
 - 13.1.1 后视点坐标定向"
- 对调取的坐标数据可以进行编辑,所做 编辑不会影响原数据,编辑后点名不再 显示。

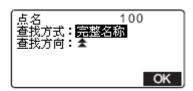
Note

- 调取的点名将显示直至变更当前作业。
- 利用[**查找**]功能查找坐标点时可按点名的"完整名称"或"部分名称"方式进行,仪器 首先在当前作业中查找,然后再到坐标作业中查找。
- 若当前作业中存在多个相同的点号, 仪器将查找出最新点的数据。

完整名称查找内存已知坐标点步骤

- 1. 在调取已知坐标数据表界面下按**[查找]** 键。
- 2. 设置查找方式。
 - (1) 点名:输入查找点的全点名
 - (2) 查找方式: 完整名称
 - (3) 查找方向: 往上或往下
- 3. 按[**OK**]键显示与查找点名完全匹配的坐标 点数据。

🚺 点名查找


数据是按其记录时间先后顺序保存的。当出现多个点的点名与查找点名完全相符时,则仪器将以最新点的数据作为查找结果,具体查找方法见下面说明。

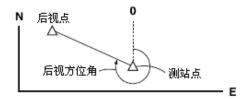
Note

• 选项设置如下(*为默认设置):

查找方向: 🗷 (从当前点名开始向后查找)*

▲ (从当前点名开始向前查找)

部分名称查找内存已知坐标点步骤


- 1. 在调取已知坐标数据表界面下按**[查找]** 键。
- 2. 设置查找方式。
 - (1) 点名:输入查找点的部分点名
 - (2) 查找方式: 部分名

点名 查找方式:|部分名 | OK |

- 3. 按[**OK**]键显示符合查找条件的所有坐标点 名表。
- 4. 选取所需点名后按{ENT}键显示坐标点数据。

13.1.1 后视点坐标定向

后视点坐标定向功能是依据输入的测站点和后视点坐标反算出后视方位角来完成测站的后视定向。

后视点坐标定向步骤

- 1. 输入测站数据。
 - "13.1 输入测站和后视方位角数据"
- 2. 按[后视点]键进入坐标定向输入界面。
 - 按**[调取]**键可调取当前作业或坐标作业 中的坐标数据。
 - "调取内存已知坐标数据步骤"

13.设立测站

- 3. 输入后视点坐标后按[OK]键。
 - 屏幕实时显示当前的角度值以及根据测 站点和后视点坐标反算的方位角值。
- 4. 照准后视点按[YES]键完成后视定向。
 - ·按[NO]键将返回步骤 2 界面。
 - •按[记录]键可将测站数据、后视数据和 角度测量数据(若按[观测]键还包括距 离数据)保存至当前作业。
 - 将后视方位角数据记录至当前作业。
 - 1 "28.2 记录定向数据"
 - •按[观测]键可进行后视平距测量和检查。
 - 按**[仪器高]**键可进行仪器高和目标高的 设置。
 - 按[记录]键可将后视测量检查结果保存 至当前作业中。

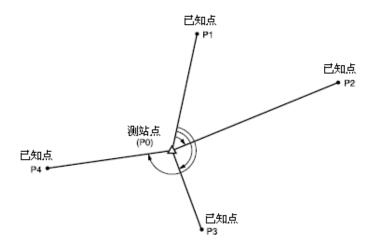
后视定向 后视读数 ZA 89°59'50" HA-R 125°32'20" 方位角 45°00'00" 记录 观测 NO YES

检查后视平距
平距计算值 15.000m
平距观测值 13.000m
平距差值 2.000m
记录 仪器高 **OK**

13.2 自由设站

自由设站是通过后方交会测量方法,即对多个已知坐标点的观测来确定测站点的坐标和完成测站的定向。仪器内存中的坐标数据可以作为已知点数据调用,需要时还可对各观测点的残差情况进行检查。

输入值 输出值


已知点坐标: (Ni, Ei, Zi) 测站点坐标: (N0, E0, Z0)

观测值

水平角观测值: Hi

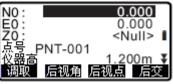
垂直角观测值: Vi

距离观测值 : Di

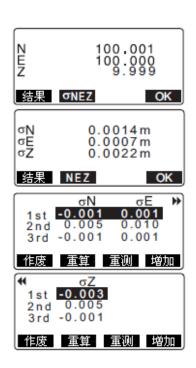
- 后方交会测量结果可以是测站点的 N、E、Z 坐标,也可以仅仅是 Z 坐标。
- 坐标后方交会测量结果将以测量所得值替代原值作为测站点 N、E、Z 坐标,而高程后方交会测量结果仅以测量所得 Z 值替代原 Z 值, N、E 坐标值则保留原值。实施后方交会测量时请按照"13.2.1 坐标后方交会测量"和"13.2.2 高程后方交会测量"介绍的步骤进行。
- 输入的已知坐标和交会计算所得坐标均可保存至当前作业中。
 - "29.作业选取与删除"

13.2.1 后方交会观测设置

坐标后方交会测量开始首前先完成对观测设置项的设置。

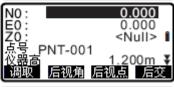

后方交会观测设置步骤

- 1. 在坐标测量菜单界面下选取"测站定向"。
- 2. 按[后交]键进入后方交会测量菜单界面。
- 3. 选取"设置"。
- 4. 对下列后方交会设置项进行设置(*为默认设置):
 - 1) 盘左盘右观测: YES/No* 用于是否进行盘左盘右观测的设置。 1 13.2.3 盘左盘右后方交会测量"
 - σ Z显示: On*/Off


 用于是否在测站坐标交会计算结果界

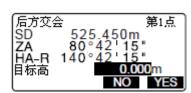
 面下显示高程标准差的设置。
 - 按 [σ NEZ] 键显示交会结果的标准差; 按 [NEZ] 键返回测站坐标界面。
 - 按{►}键显示高程标准差σZ。

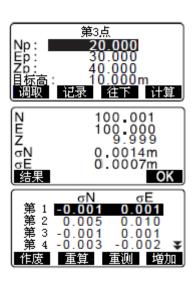
13.2.1 坐标后方交会测量

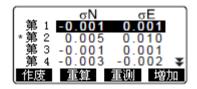

坐标后方交会测量用于通过对多个已知点的观测确定出测站点的 N、E、Z 坐标。

• 利用 3~10 个已知点进行后方交会测量时可以不必测距,仅有 2 个已知点时必须测距。

坐标后方交会测量步骤


- 1.在坐标测量菜单界面下选取"测站定向"。
- 2. 按[后交]键进入后方交会测量菜单界面。
- 3. 选取"交会坐标"。
- 4. 照准第一已知点后按**[观测]**键开始测量。 测量结果显示在屏幕上。
 - 按[角度]键时仅测角,不测距。
- 5. 按[YES]键确认测量结果。
 - 此时可输入目标高。
- 6. 输入第一已知点坐标值,然后按**[往下]**键 进入第二已知点测量界面。



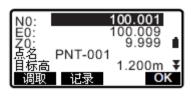


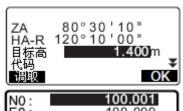
- 按[**调取**]键可调用内存中的已知坐标数据。
- "13.1 输入测站和后视方位角数据"
- 按{ESC}键返回前一已知点测量界面。
- 7. 重复步骤 **4~5**,以同样方法观测和输入全 部已知点坐标值。当观测量足以计算测站 点坐标时,屏幕将显示**[计算]**功能键。
- 8. 在全部已知点观测完成后,按**[计算]**键进 行测站点坐标的计算。

屏幕显示出测站点坐标及其反映交会精度 的标准差数据。

- 9. 按**[结果]**键可对测量结果进行检查。 如果结果无问题,按**{ESC}**键返回前一界 面。
 - 当某已知点未被观测或需要增加新已知 点时按[**增加]**键。
- 10. 如果认为某己知点观测值交会的结果有问题,将光标移至该己知点后按[**作废**] 键将其作废,被作废已知点左侧将被注上作废标志"*"。以同样方法将全部认为存在问题的已知点作废。
 - 再次按[作废]键可取消作废。


11. 按**[重算]**键将步骤 10 中作废点排除后重 新计算和显示测站点坐标。


如果结果无问题转至步骤 12。


如果计算结果仍存在问题,从步骤 4 重 新开始观测。

- •按**[重测]**键可对步骤 10 中作废的点重新 进行观测。如果无作废点,则可选取对 最后的点或者全部点进行重测。
- 12. 在步骤 8 界面下按[**OK**]键结束后方交会测量,交会所得坐标将被设为测站点坐标。
 - •按[YES]键可根据测站点坐标和第一已知 点坐标完成后视定向。
 - 按[OK]键确认完成测站的设立和定向后 进入坐标测量界面。
 - 按[记录]键将显示后视点数据记录界面, 按[OK]键确认可将测站数据、后视数据、 已知点数据和角度测量数据保存至当前 作业。
 - 按[NO]键则不进行后视定向直接返回测 站设立界面。

Note

•即使在设置模式下将距离单位设为"英寸",标准差仍是以"英尺"单位显示。

13.2.2 高程后方交会测量

高程后方交会测量用于通过对多个已知点的观测确定出测站点的高程。

- 高程后方交会测量时要求对已知点进行距离测量。
- •观测的已知点数为1~10个。

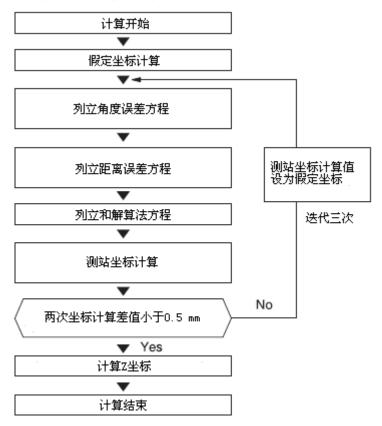
高程后方交会测量步骤

- 1. 在坐标测量菜单界面下选取"测站定向"。
- 2. 按[后交]键进入后方交会测量菜单界面。
- 3. 选取"交会高程"。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。

17.2 仪器整平"

- 4. 照准第一已知点,按**[观测]**键开始测量。 测量结果显示在屏幕上后按**[停止]**键。
- 5. 按[YES]键确认测量结果。
- 6. 输入第一已知点高程值后按**[往下]**键进入第二已知点测量界面。

- 7. 重复步骤 **4~5**,以同样方法观测和输入全部已知点高程值。
 - ·按{ESC}键可返回前一已知点测量界面。
- 8. 在全部已知点观测完成后,按**[计算]**键进 行测站点高程的计算。


屏幕显示测站点高程及其反映交会精度的 标准差数据。

- 9. 按[**结果**]键可对测量结果进行检查。 如果结果无问题,按{**ESC**}键转至步骤 10。
- 10. 如果认为某已知点观测值交会的结果有问题,将光标移至该已知点后按[作废] 键将其作废,被作废点已知点左侧将被注上作废标志"*"。
- 11. 按**[重算]**键将步骤 10 中作废点排除后重新计算和显示测站点高程。如果结果无问题,转至步骤 12。如果计算结果仍存在问题,从步骤 4 重新开始观测。
- 12. 按[**OK**]键结束后方交会测量,测站点原 高程值将被交会所得高程 Z 值取代, N、 E 坐标值保持不变。

🚺 后方交会计算流程

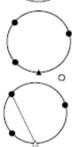
测站点的 N、E 坐标通过列立角度和距离误差方程,采用最小二乘原理求取;测站点的 Z 坐标则以其平均值作为最后结果。

I 后方交会测量注意事项

当测站点与所观测的三个或三个以上已知点位于同一圆周上时,测站点的坐标无法 确定。

下图所示图形是可取得:

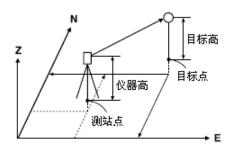
下图所示图形无法计算出正确结果:



当测站点和已知点位于同一圆周上时,可采取下列措施之一进行观测:

(1) 将测站点尽可能地设立在由已知点构成的三角形之重心上。

- (2) 增加一不位于圆周上的已知点。
- (3) 至少对其中一个已知点进行距离测量。



• 当已知点间的夹角过小时,仪器无法计算出测站点的坐标。测站点距已知点越远,已知点间的夹角就越小,也就越容易出现位于同一圆周上的情况。

14. 坐标测量

在输入测站点坐标、仪器高、目标高等数据和完成后视坐标方位角定向后,利用坐标测量 功能可以直接测量和记录目标点的三维坐标值。

• 测距参数设置也可在坐标测量菜单下进行。

"33.2 测距参数设置"

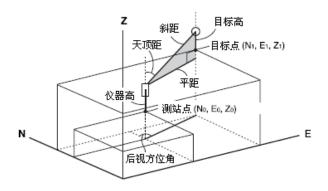
三维坐标测量

在测站和后视坐标方位角设置完成后便可测定和记录目标点的三维坐标。

目标点三维坐标计算公式如下:

 $N1 = N0 + S \times \sin Z \times \cos Az$

 $E1 = E0 + S \times \sin Z \times \sin Az$


 $Z1 = Z0 + S \times cosZ + ih - fh$

ih: 仪器高 S: 斜距 NO: 测站点 N 坐标 Z: 天顶距 fh: 目标高

EO: 测站点 E 巫标 ZO: 测站点 Z 坐标 Az: 坐标方位角

· 右盘位观测时,天顶距Z均按 360°-Z计算。


- 无测量值或者"空"值显示时均以"Null"表示。
- ·如果测站点 Z 坐标设为"Null",则测量点 Z 坐标自动设为"Null"。

三维坐标测量步骤

- 1. 在测量模式第 2 页菜单界面下按[**菜单**]键 后选取"坐标测量"。
- 2. 在<坐标测量>界面下选取"测站定向"并 完成测站的设立和后视定向。
- 3. 精确照准目标点,在<坐标测量>界面下选取"测量"后按**[观测]**键开始坐标测量。目标点坐标值显示在屏幕上,按**[停止]**键停止坐标测量。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。

7.2 仪器整平"

14.坐标测量

- 如需要可输入目标高、点号和代码数据。
- •[记录]键用于记录测量结果。
- [**测存**]键用于在不需要改变自动生成的 点号、目标高和代码时,自动完成目标 点的测量和记录。

28.记录数据"

- 4. 精确照准下一目标点后按[观测]键或[测存]键测量,重复此方法至完成全部目标点的测量。
 - 全部目标点测量完成后,按{ESC}键结束并返回<坐标测量>界面。

15. 放样测量

放样测量功能用于在实地上测设出设计点的点位。放样过程中,通过对照准点的角度、距离或坐标测量,仪器可显示出预先输入的放样值与实测值之差值以引导放样。

显示的差值采用下列公式计算:

水平角差值

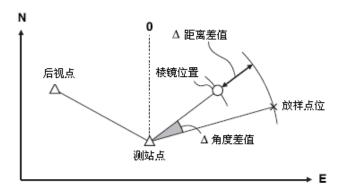
水平角差值 = 水平角放样值-水平角实测值

距离差值

平距差值 = 平距实测值-平距放样值

斜距差值 = 斜距实测值-斜距放样值

高差差值 = 高差实测值-高差放样值


- 放样值的输入有多种模式,包括坐标、平距、斜距、高差和悬高放样模式。
- 在坐标、平距、斜距和高差放样模式下,可调取仪器内存中的已知坐标作为放样数据。 放样时的平距、斜距和高差放样值根据调取的坐标放样值、测站坐标、仪器高和目标高 计算而得。
- 放样测量工作可借助导向光高效率完成。
 - **一** "4.1 仪器部件名称", "5.1 键盘操作"
- 放样测量菜单界面下可对测距参数进行设置。
- 无测量值或者 "空"值显示时均以 "Null"表示。 角度或距离放样值设为 "Null"时, 距离差值自动设为 "Null"。

• 如果放样数据不是在<放样坐标>界面下输入,当返回<放样坐标>界面时,所输入的放样数据将被删除。

15.1 坐标放样测量

在输入了放样点的坐标后,CX 自动计算出放样所需的角度和距离值,利用角度和距离放 样功能便可测设出所需点位。

• 进行高程放样时,将棱镜安置在测杆上并保持目标高一致可提高放样作业的效率。

坐标放样测量步骤

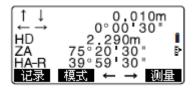
- 1. 在测量模式第 3 页菜单下按[**放样**]键进入 放样测量界面。
- 2. 选取"测站定向"后输入测站数据和完成 后视定向。
 - "13.1 输入测站和后视方位角数据"
- 3. 选取"放样数据"进入放样数据输入界面。

- 4. 输入放样点的坐标。
 - 按[**调取**]键可调用内存中的已知坐标作 为放样数据。
 - "13.1 输入测站和后视方位角数据"
 - 按[模式]键可将输入的坐标放样值换算 成距离和水平角放样值,并可在坐标、 平距、斜距、高差、高度放样测量模式 间切换。
- 5. 按[OK]键确认输入的放样数据。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。

17.2 仪器整平"

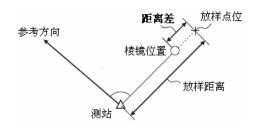
- 6. 转动仪器照准部至使显示的"水平角差" 值为零确定出放样方向,然后在该方向上 设立棱镜。
- 照准棱镜按[观测]键进行距离测量。
 屏幕显示棱镜点与放样点间的距离偏差值。
- 8. 根据显示的距离偏差值前后移动棱镜并测量,至使距离偏差值为"0"即为放样点位。 距离偏差值为"+"时将棱镜移向测站, 距离偏差值为"-"时将棱镜移离测站。
 - 按[←→]键可以箭头符号形式直观显示 棱镜应移动的方向:
 - ← : 向左移动棱镜
 - → : 向右移动棱镜
 - ↑ : 向外移动棱镜
 - 」 : 向内移动棱镜

15.放样测量

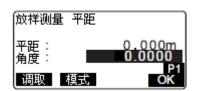

🕯 : 向上移动棱镜

₹: 向下移动棱镜

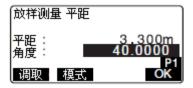
当棱镜位置与放样点位置的偏差小于一定范围时,四个箭头符号同时显示在屏幕上。


- 9. 按{ESC}键返回步骤 4 放样界面。
 - 在步骤 4 中按[调取]键,则屏幕将列出 内存中的放样点坐标表,选取所需放样 点继续实施放样测量。
 - 按[记录]键可存储放样结果。

数据记录方法: "28.记录数据"


15.2 角度距离放样测量

角度和距离放样测量功能是根据相对于参考方向转过的角度和距离测设出所需点位。



角度距离放样测量步骤

- 1. 在测量模式第 3 页菜单下按[**放样**]键进入 放样测量界面。
- 2. 选取"测站定向"后输入测站数据和完成 后视定向。
 - "13.1 输入测站和后视方位角数据"
- 3. 选取"放样数据"进入放样数据输入界面。
- 4. 按[模式]键至使屏幕显示<放样测量 平 距>界面。

- 按**[模式]**键可在坐标、平距、斜距、高 差、高度放样测量输入模式间切换。
 - "15.1 坐标放样测量","15.3 悬高放 样测量"
- 按[调取]键可调用内存中的放样点坐标 反算出放样角度和距离。
 - ☞ "13.1 输入测站和后视方位角数据"
- 5. 输入下列放样数据:
 - (1)平距:测站至放样点的水平距离值(选 取其他放样模式时输入相应的斜 距、高差、高度放样值)。
 - (2)角度:相对参考方向转过的水平角放样 值。
 - 在第 2 页菜单下按**[坐标]**键可输入放样 点的坐标。

记录

- 6. 按[OK]键确认输入的放样数据。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。
 - **17**"7.2 仪器整平"
- 转动仪器照准部至使"水平角差"值为零确定出放样方向,然后在该方向上设立棱镜。

15.放样测量

8. 照准棱镜按**[观测]**键进行距离测量。 屏幕显示棱镜点与放样点间的距离偏差 值。

9. 根据显示的距离偏差值前后移动棱镜,测量至使角度和距离偏差值均为"0"时即为放样点位。

- 10. 按[ESC]键返回放样界面。
 - 在步骤 4 中按[**调取**]键,则屏幕将列 出内存中的放样点坐标表,选取所需 放样点继续实施放样测量。
 - 按[记录]键可存储放样结果。
 - 数据记录方法: "28.记录 数据"

15.3 悬高放样测量

悬高放样测量功能用于无法在其位置上设置棱镜的点的高度的测设。

▶ "12.6 悬高测量"

悬高放样测量步骤

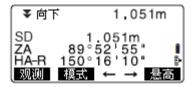
- 将棱镜设置于放样点的正上方或正下方并 量取棱镜高(棱镜中心至地面点的距离)。
- 2. 在测量模式第 3 页菜单下按[**放样**]键进入 放样测量界面。
- 3. 如需要可输入测站数据。
 - "13.1 输入测站和后视方位角数据"
- 4. 选取"放样数据"后按[**模式**]键至使屏幕显示"放样测量高度"界面。

- 5. 在"高度"栏内输入地面点至放样点的高度值并输入棱镜高后按[**OKI**]键。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。

17 "7.2 仪器整平"

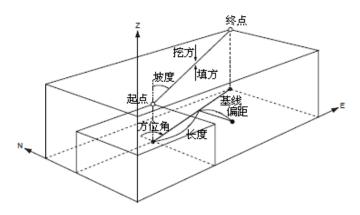
- 6. 照准棱镜后按[观测]键测距。
- 7. 按[**悬高**]键开始悬高放样测量,根据屏幕 提示的偏差值俯仰转动望远镜至使偏差值 为"0"确定出放样点位。

"15.2 角度距离放样测量"步骤 9 至 10


按[**一一**] 键可使望远镜转动方向以箭 头符号直观表示:

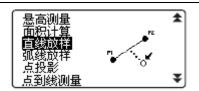
★ 向上: 向上转动望远镜。

▼ 向下: 向下转动望远镜。


8. 悬高放样完成后按{**停止**}键结束,再按 **{ESC**}键返回步骤 5 放样界面。

16. 直线放样测量

直线放样功能用于测设相对于确定基线的距离为已知的点位,也可用于求取测量点至确定 基线的距离。


16.1 定义基线

直线放样测量前先要定义基线。基线可以通过输入两已知点的坐标或测定两点坐标来定义。比例因子反映出已知坐标与实测坐标之间的差异。

- 不对基线的起点和终点进行测量时其比例因子为"1"。
- 定义的基线即可用于直线放样测量,也可用于点投影。

输入两点坐标定义基线步骤

1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"直线放样"。

- 2. 选取"测站定向"后输入测站数据。
 - "13.1 输入测站和后视方位角数据"

3. 选取"定义基线"。

- 4. 输入基线起点坐标数据后按[OK]键。
 - •按[**调取**]键可调用内存中的已知点坐标。 "13.1 输入测站和后视方位角数据"
 - 按[观测]键可直接测量基线起点坐标。
- 5. 输入基线终点坐标数据。
 - 按[观测]键可直接测量基线终点坐标。
- 6. 若需检测基线点按{FUNC}键后按[**测量**]键 进入基线点检测界面,否则按[OK]键转至 步骤 10。
- 7. 照准基线起点按[**观测**]键,屏幕显示测量 结果。
 - •按[停止]键停止测量。
 - 此时可输入目标高。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。

17"7.2 仪器整平"

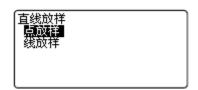
- 8. 按[YES]键确认测量结果。
 - 按[NO]键可重新测量基线起点。
- 9. 照准基线终点按[**观测**]键,屏幕显示测量 结果后按[**YES**]键确认。

观测基线起点 SD 525,450m ZA 80°30'15" HA-R 120°10'00" 目标高 1.400m NO YES

16.直线放样测量

10. 屏幕显示基线定义结果。

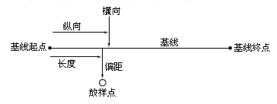
屏幕显示出基线起终点的计算平距值、 测量平距值、比例因子、方位角值和坡 度值。



11. 按[**OK**]键结束基线定义进入<直线放 样>界面。

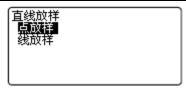
"16.3 直线线放样"

- 按[Sy=1]键可将"y 比例"设为"1"。
- 按[1: **]键可将坡度显示切换为"1: **",即"高差:平距"。

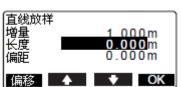

Note

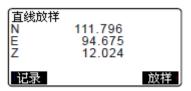
- •直线放样测量除了能在[**菜单**]下进行外,还可在将[**放线**]功能定义到测量模式的软键上后进行。
- **[放线]**键定义: "33.3 键功能定义"
- 基线除了可以按上面介绍的通过输入起、终点坐标的方法来定义外,也可在输入起、终 点坐标界面下按[**观测**]键直接测定起、终点的坐标来进行定义。

16.2 直线点放样

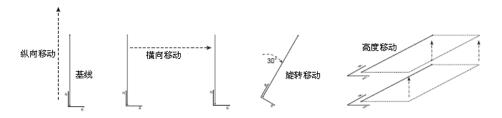

直线点放样功能可通过输入基于确定基线的长度值和偏距值来(见下图)求取放样点的坐标,并根据求得的坐标对计算点实施放样。

• 在进行直线点放样测量前必须先定义基线。

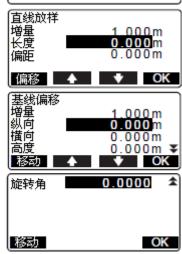


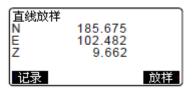

直线点放样测量步骤

1. 在<直线放样>界面下选取"点放样"。


- 2. 输入下列各值:
 - 1)增量:指长度或偏距的增量值,按箭头 键可在长度值或平距值原值基础上增加 或减少一个增量值。
 - 2) 长度: 放样点在基线上的垂足点至基线 起点间的距离(基线纵向)。
 - 3) 偏距: 放样点至其在基线上垂足点间的 距离(基线横向)。
 - 箭头键用于使长度值或偏距值在原值基础上增加或减少一增量值。
- 3. 按[OK]键计算并显示放样点的坐标值。
 - •[记录]键用于存储计算结果。
 - 记录方法:"30.1 已知坐标输入与删除"
 - [放样]键用于进入计算点的放样测量。 "15.放样测量"
- 4. 按{ESC}键从步骤 2 起继续直线放样测量。

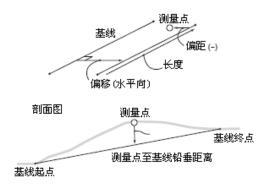
基线移动


定义的基线可以通过指定的纵向、横向、高度偏离值和旋转角进行下图所示的三维空间移动。



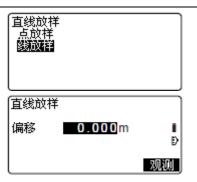
基线移动步骤

- 1. 在<直线放样>界面下选取"点放样"。
- 2. 按[偏移]键进入<基线偏移>界面。
- 3. 输入以下各值:
 - 1)增量:按箭头键可在相应偏离值基础上增加或减少一个增量值。
 - 2) 纵向:纵向偏离值。
 - 3) 横向:横向偏离值。
 - 4) 高度: 高度偏离值。
 - 5) 旋转角:角度偏离值。
 - 箭头键用于使相应偏离值在原值基础上 增加或减少一增量值。
- 4. 按[OK]键返回步骤 2 界面。
 - [移动]键用于根据设定的各偏离值永久 性移动基线。
- 5. 在步骤 2 界面下设定各值,按[**OK**]键便可 计算参照移动后基线的放样点的坐标。



16.3 直线线放样

直线线放样功能用于求取测量点相对于确定基线的水平距离和垂直距离。需要时基线还可做水平向的偏移处理。


• 在进行直线线放样测量前必须先定义基线。

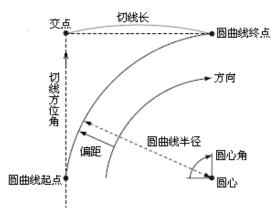
直线线放样测量步骤

- 1. 在<直线放样>界面下选取"线放样"。
- 2. 输入基线的偏移值。
 - 偏移:基线在水平向上的偏移距离。 向右侧偏移时取正值,向左侧偏移时取 负值。
 - 若不设置偏移值直接转至步骤 3。
- 3. 照准目标后按[**观测**]键测量。 屏幕上显示出测量结果,按[**停止**]键停止 测量。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。

17.2 仪器整平"

16.直线放样测量

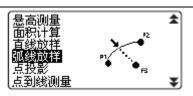
4. 按[YES]键确认测量结果。

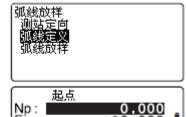

屏幕上显示出测量点与基线的偏差值:

- 偏距:测量点至基线的水平距离,测量 点位于基线右侧时为正值,在左侧时为 负值。
- 偏高:表示测量点高于基线。
- 偏低:表示测量点低于基线。
- 长度:测量点在基线上的垂足点至基线 起点的距离。
- · 按[NO]键重新观测目标。
- 5. 照准下一目标后按[观测]键继续测量。
 - •[记录]键用于存储测量结果。 记录方法:"28.记录数据"

17. 弧线放样测量

弧线放样功能用于圆曲线点位的计算和测设,根据输入参数的不同,圆曲线的定义方式 有多种。




17.1 定义弧线

圆曲线可通过输入如半径、圆心角、起点坐标、圆心点、终点坐标等参数进行定义;也可通过对起、终点和圆心点的观测来定义。

输入坐标定义圆曲线步骤

- 1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"弧线放样"。
- 2. 输入测站数据完成测站设立。
 - "13.1 输入测站和后视方位角数据"
- 3. 在<弧线放样>界面下选取"弧线定义"。
 - 按[调取]键可调用内存中已知坐标数据 来定义弧线。
 - "13.1 输入测站和后视方位角数据"

17.弧线放样测量

- 4. 输入圆曲线起点坐标数据后按[OK]键。
- 按{▶}或{◀}键选取圆曲线定义方式后按 [OK]键。

可选取的圆曲线定义元素如下:

终点 :输入曲线终点坐标

终点,圆心:输入曲线终点和圆心点坐标

终点,交点:输入曲线终点和交点坐标

圆心 : 输入曲线圆心点坐标

交点 : 输入曲线交点坐标

圆心,交点:输入曲线圆心点和交点坐标

6. 输入指定的圆曲线定义点坐标数据。

现以"终点"为定义点为例,右图所示为 圆曲线终点坐标输入界面。

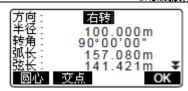
当定义方式需输入多个坐标点时,屏幕显示出[往下]键,按[往下]键可输入下一坐标点数据。

- 7. 按[OK]键确认进入圆曲线参数输入界面。
- 8. 输入下列圆曲线参数:
 - (1) 方向: 相对于起点曲线的转向
 - (2) 半谷: 圆曲线半径
 - (3) 转角: 圆曲线所对圆心角
 - (4) 弧长: 圆曲线弧长
 - (5) 弦长: 曲线起点至终点直线距离
 - (6) 切线长: 切线长
 - (7) 切线角: 切线方位角

输入参数的数量取决于步骤 5 中指定的定义元素。

▶ " [] 定义点与圆曲线参数"

9. 输入圆曲线参数后按{**OK**}键,仪器将计算 出其他相关参数。


•[圆心]:记录计算所得圆心坐标。

[交点]: 记录计算所得交点坐标。

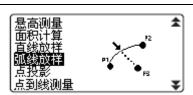
• [终点]:记录计算所得终点坐标。

10. 按**[OK]**键结束圆曲线定义进入<弧线放 样>界面,开始弧线放样测量。

17.2 弧线放样"

Note

• 弧线放样测量除了可在在[**菜单**]下进行外,还可在将[**放弧**]功能定义到测量模式的软键上后进行。


[放弧]键定义: "33.3 键功能定义"

测量坐标定义圆曲线步骤

- 在测量模式第 2 页菜单下按[**菜单**]键后选取"弧线放样"。
- 2. 输入测站数据。
 - "13.1 输入测站和后视方位角数据"
- 3. 在<弧线放样>界面下选取"定义弧线"。
- 弧线放样 测站定向 定义弧线 弧线放样
- 4. 照准圆曲线起点后按[观测]键测量。
 - 按[停止]键停止测量。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。

17"7.2 整平仪器"

17.弧线放样测量


- 5. 按[OK]键确认测量结果。
 - 按[观测]键重新测量圆曲线起点。
 - 按[仪器高]键可输入仪器高和目标高。
- 6. 按{▶}或{◀}键选取圆曲线定义方式后按 [OK]键。
- 7. 照准所选定义点(终点、圆心点或交点)后 按[**观测**]键测量。
- 8. 按[OK]键确认测量结果。
 - 按[观测]键重新测量定义点。
 - 按[仪器高]键可输入仪器高和目标高。
 - 当定义方式需多个坐标点时,屏幕显示 出[往下]键,按[往下]键可测量下一定义 占。
- 9. 输入下列圆曲线参数:
 - (1) 方向: 相对于起点曲线的转向
 - (2) 半径: 圆曲线半径
 - (3) 转角: 圆曲线所对圆心角
 - (4) 弧长: 圆曲线弧长
 - (5) 弦长: 曲线起点至终点直线距离
 - (6) 切线长: 切线长
 - (7) 切线角: 切线方位角

输入参数的数量取决于步骤 5 中指定的定义点。

10. 输入圆曲线参数后按{**OK**}键,仪器将计算出其他相关参数。

• [**圆心**]: 记录观测所得圆心坐标。 • [**交点**]: 记录观测所得交点坐标。 • [**终点**]: 记录观测所得终点坐标。 方向: 右转 半径: 100.000m 转角: 90°00'00" 弧长: 157.080m 弦长: 141.421m ▼ 圆心 交点 OK

11. 按**[OK]**键结束圆曲线定义进入<弧线放 样>界面,开始弧线放样测量。

17.2 弧线放样"

Note

• 弧线放样测量除了可在[**菜单**]下进行外,还可在将[**放弧**]功能定义到测量模式的软键上 后进行。

[放弧]键定义:"33.3键功能定义"

🚺 定义点与圆曲线参数

输入圆曲线参数的数量取决于步骤 5 或 6 中指定的定义点,下表中以"○"和"×"分别表示在指定定义点后需要和不需要输入的圆曲线参数:

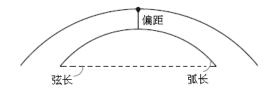
参数定义点	半径	转角	弧长	弦长	切线长	切线 方位角	方向
终点,							
圆心点	X	×	X	×	×	×	0
终点,							
交点	X	×	X	×	×	×	0
圆心点,							
交点	X	×	×	×	×	×	0
终点	0	0	0	×	0	0	0
圆心点	×	0	0	0	0	×	0
交点	0	0	×	0	×	×	0

17.弧线放样测量

🚺 弧线放样测量注意事项

出现下列情形时圆曲线参数无法计算:

圆曲线半径< <u>弦长</u> 2


圆曲线弧长く 弦长

2×切线长く 弦长

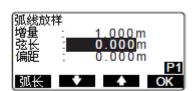
切线方位角与起终点连线方位角间夹角等于"0"或大于180°

17.2 弧线放样

弧线放样功能用于在完成圆曲线定义后,通过输入圆曲线弧长(或弦长)、偏距值来计算圆曲线上及其两侧点的坐标并进行测设。

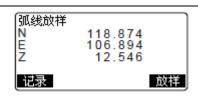
• 进行弧线放样测量前,必须先对圆曲线进行定义。

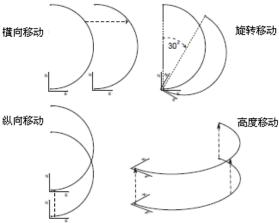
弧线放样测量步骤


1. 在<弧线放样>界面下选取"弧线放样"。

2. 输入下列数据:

- (1) 增量:按箭头键可在相应原值基础上 增加或减少一增量值。
- (2) 弧长: 圆曲线起点至计算点间的弧长。
- (2) 弦长: 圆曲线起点至计算点间的弦长。
- (3) 偏距: 计算点至定义圆曲线的偏距值, 以左"一"右"+"方式输入。
- •按[弦长]键可切换至弦长输入。
- 箭头键用于在原值基础上增加或减少一增量值。

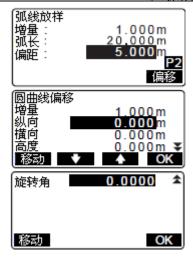



17.弧线放样测量

- 3. 按**[OK]**键计算出放样点的坐标并显示在屏幕上。
 - •[记录]键用于将计算所得放样点坐标值 保存至仪器内存中。
 - □ 记录方法: "30.1 已知坐标输入与 删除"
 - •[放样]键用于对放样点实施放样测量。
 - "15. 放样测量"
- 4. 按{ESC}键从步骤 2 起继续弧线放样测量。

弧线移动

定义的弧线可以通过指定的纵向、横向、高度偏离值和旋转角进行下图所示的三维空间移动。



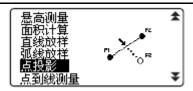
弧线移动步骤

1. 在<弧线放样>界面下选取"弧线放样"进 入弧线放样界面。

- 2. 按{FUNC}键后按[偏移]键进入<圆曲线偏移>界面。
- 3. 输入以下各值:
 - (1) 增量:按箭头键可在相应原偏离值基础上增加或减少一增量值。
 - (2) 纵向:纵向偏离值。
 - (3) 横向:横向偏离值。
 - (4) 高度: 高度偏离值。
 - (5) 旋转角:角度偏离值。
 - 箭头键用于使相应原偏离值在原值基础 上增加或减少一增量值。
- 4. 按[OK]键返回步骤 2 界面。
 - [**移动**]键用于根据设定的各偏离值永久 性移动圆曲线。
- 5. 在步骤 2 界面下设定各值,按[OK]键便可 计算和显示参照移动后圆曲线的放样点的 坐标。

18. 点投影

点投影功能用于将一已知坐标点投影至一确定基线上,待投影点的已知坐标可以通过测量获得,也可由手工输入。仪器将计算并显示投影点的长度值、偏距值和坐标值。


18.1 定义基线

进行点投影前先要定义基线,基线定义方法与直线放样基线定义方法相同。

• 定义的基线可用于直线放样测量或点投影。

定义基线步骤

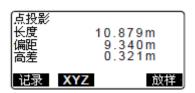
 在测量模式第 2 页菜单下按[**菜单**]键后选 取"点投影"。

- 2. 输入测站数据和定义基线。
 - ☑ 基线定义方法: "16.1 定义基线"
- 3. 按[**OK**]键完成基线定义进入<点投影>界面。
 - 18.2 点投影"

Note

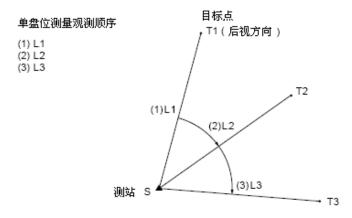
- 点投影除了在[**菜单**]下进行外,还可在将[**投点**]功能定义到测量模式的软键上后进行。
 - [投点]键的定义:"33.3键功能定义"

18.2 点投影

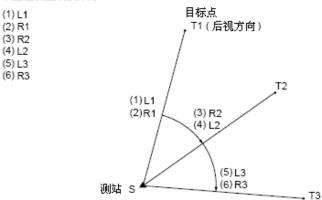

在进行点投影前必须先定义基线。

点投影步骤

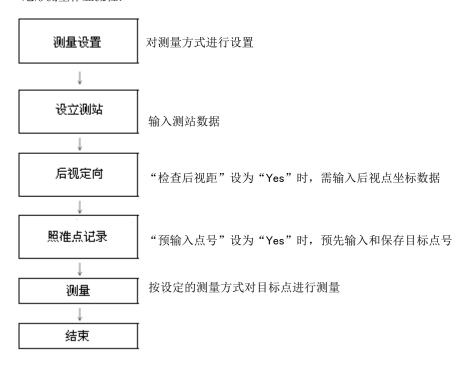
- 1. 进行基线定义。
 - 18.1 定义基线"
- 2. 在<点投影>界面下选取"点投影"。
- 3. 输入待投影点坐标。
 - [观测]键用于测定待投影点的坐标。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。
 - 17"7.2 整平仪器"
 - •[记录]键用于将输入的坐标值保存至仪 器内存中。
 - "30.1 已知坐标输入与删除"
- 4. 按**[OK]**键显示投影结果如下:
 - 长度, 基线起点至投影点间的距离。
 - 偏距: 待投影点至投影点间的距离。
 - 高差: 待投影点与投影点间的高差。
 - •[XYZ]键用于显示投影点的坐标。
 - 「偏心」键用于显示偏离值。
 - •[记录]键用于将投影点的坐标值保存至 仪器内存中。
 - □ 记录方法: "30.1 已知坐标输入与删除"
 - •[放样]键用于对投影点实施放样测量。
 - 15. 放样测量"
- 5. 按{ESC}键从步骤 3 起继续其他点的投影。



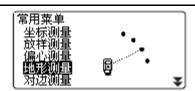




19. 地形测量


地形测量功能用于对地形碎部点的测量和记录; 需要时也可采用双盘位测量方式对目标点进行测量和记录。

地形测量作业流程:

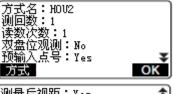

19.1 测量设置

地形测量前必须先进行测量设置,测量设置包括对测量方式(测回数、读数次数、双盘位观测、预输入点名、测量后视距、检查后视距等)的设置和保存。

- 设置和保存的测量方式可多达 8 种。
- 照准点预存点数可多达 40 个。

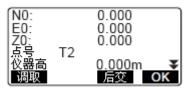
测量设置步骤

1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"地形测量"。


19.地形测量

- 2. 输入测量方式名称并设置好下列设置项:
 - (1) 测回数
 - (2) 读数次数
 - (3) 双盘位观测
 - (4) 预输入点号
 - (5) 测量后视距
 - (6) 检查后视距
 - [方式]键用于对测量设置以"测量方式" 形式进行保存或调用。
 - •[记录]键用于在光标位置处记录当前设置的"测量方式"。
- 3. 按[OK]键确认。
- 4. 输入测站数据并按[OK]键确认。

 - •[**后交**]键用于以后方交会测量方法完成 测站的设立。
 - 13.2 自由设站"
- 5. 输入后视点坐标并按[**OK**]键确认。
 - 第(5)设置项"测量后视距"或第(6)设置项"检查后视距"如果设为"NO",则不显示此界面。
- 6. 按[**增加**]键并顺序输入待观测的目标点号 后按**[ENT**]键完成各点号的预输入。


预输入完成后按[**OK**]键进入测量界面。

- **厂**"19.2 地形测量"
- 第(4)设置项"预输入点号"如果设为 "NO",则不显示此界面。
- •[删除]键用于所选点号的删除。
- •[编辑]键用于所选点号的修改。

选取测量方式 01: HOV2 02: RL1 03: 04:

Note

- •地形测量除了可在[**菜单**]下进行外,还可在将[**地形**]功能定义到测量模式的软键上后进行。 **[地形**]键的定义:"33.3 键功能定义"
- 测量设置的选项内容如下(带"*"号为默认值):
 - (1) 测回数: 1*/2
 - (2) 读数次数: 1*(固定值)
 - (3) 双盘位观测: Yes / No*
 - (4) 预输入点号: Yes / No*
 - (5) 测量后视距: Yes (对后视方向进行距离测量) / No* (对后视方向仅进行角度测量)
 - (6) 检查后视距: Yes (将后视方向计算距离值与实测距离值进行对比) / No*
- "双盘位观测"设为"NO"时 "测回数"固定为"1"。
- "双盘位观测"设为 "Yes"时, "测回数"可在"1"或"2"中选取。
- 只有当"测量后视距"设为"Yes"时,方可对"检查后视距"进行设置。

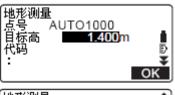
地形测量功能用于按"19.1测量设置"中所设置的测量方式对地形实施测量。

单盘位测量步骤

- 1. 按"19.1测量设置"中的步骤 1 至 6 进行 测量设置和测站设立。
- 2. 照准第 1 目标点,按[**角度**]或[**观测**]键进行 角度或距离测量。

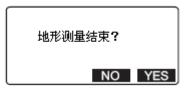
界面中显示的"D="为读数次数设置值。

- 测量之前可输入点名、目标高和代码数据。
- 第(5)设置项"测量后视距"如果设为 "NO",则测量界面上无[观测]键显示。
- 第(6)设置项"检查后视距"如果设为 "Yes",则在第1目标点测量完成后, 测站点至后视点平距的计算值、测量值 及其差值将显示在屏幕上。
- ·检查后若按{ESC}键将退出地形测量。

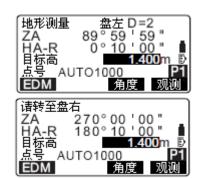

19.地形测量

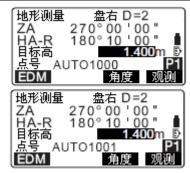
- 3. 按[**OK**]键记录测量结果并返回步骤 2 界面 进入下一目标点的测量。
 - 此时可输入目标高和代码等数据。
 - 对第 2 目标点及其后各目标点测量中, 如果:

第(1)设置项"测回数"设为"1" 第(2)设置项"读数次数"设为"1" 第(3)设置项"双盘位观测"设为"No" 则[偏心]功能将被显示,可用于目标点 的偏心测量。


▶ "20.偏心测量"

- 4. 在完成了全部目标点的测量后,按{ESC} 键后按[Yes]键记录并结束地形测量。
 - 预输入了点号时不显示此界面。





双盘位测量步骤

- 1. 按"19.1 测量设置"中的步骤 1 至 6 进行 测量设置和测站设立,将第(3)设置项"双 盘位观测"设为"Yes"。
- 2. 左盘位照准第 1 目标点并测量。 屏幕项行显示"盘左"。
 - ▶ "地形测量步骤 2"
- 3. 按[**OK**]键确认并记录盘左测量结果。
 - "地形测量步骤 3" 此时屏幕顶部显示"请转至盘右",提示将 仪器设置为右盘位。

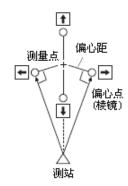
- 4. 右盘位照准第 1 目标点并测量,按[**OK**]键 确认并记录盘右测量结果。 屏幕顶行显示"盘右"。
- 5. 按步骤2至4同样方法以与第1目标点相反盘位顺序对第2目标点(即先盘右后盘左)进行测量并记录测量结果。 其余目标点也均采用与上一观测点相反盘位顺序进行测量和记录。

6. 结束地形测量。

"地形测量步骤 4"

Note

- 当屏幕显示有[观测]键时,按{ENT}键或触发键与按[观测]键具有同样功能。
- 当第(4)设置项"预输入点号"设为"No"时,则在记录测量数据时需输入目标点名。
- 记录数据显示界面会因测量设置的不同而异。
- ·在重复模式进行测量过程中,按触发键具有与[**停止**]键同样功能。


20. 偏心测量

偏心测量功能用于无法直接设置棱镜或不通视点的点位或者角度和距离测量。

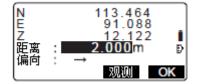
- 当测量点由于无法设置棱镜或不通视等原因不能直接对其进行测量时,可将棱镜设置在 距测量点不远处的通视偏心点上,通过对偏心点的角度和距离测量来求得至测量点的角 度和距离值。
- 本章着重介绍仪器提供的五种偏心测量方法。

20.1 单距偏心测量

单距偏心测量功能通过输入偏心点至测量点间的平距(偏心距)和方位来对测量点进行测量。

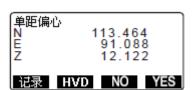
- 当偏心点设在测量点左侧或右侧时,应使其至测量点与测站点之间的夹角约等于 90°。
- 当偏心点设在测量点前方或后方时,应使其位于测量点与测站点之连线上。

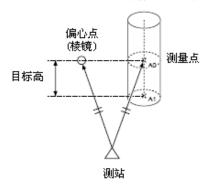
单距偏心测量步骤


- 在测量点附近选取一通视点作为偏心点, 量取偏心距并在偏心点上设立棱镜。
- 2. 在测量模式第3页菜单下按[**偏心**]键进入<偏心测量>界面。
- 3. 选取"测站定向"并输入测站数据完成测 站设立。
 - **()**"13.1 输入测站和后视方位角数据"

- 4. 选取"单距偏心"。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。

17 "7.2 整平仪器"


照准偏心点上的棱镜后按[观测]键测量。
 屏幕显示测量结果后按[停止]键停止测量。


- 6. 输入以下各值:
 - (1) 偏心距 (距离)
 - (2) 偏心点方位(偏向)
 - ←: 偏心点位于测量点左侧
 - →: 偏心点位于测量点右侧
 - ↑: 偏心点位于测量点后方
 - ↓:偏心点位于测量点前方
 - •按[观测]键可对偏心点进行重测。
- 7. 按**[OK]**键计算并显示测量结果。
- 8. 按[YES]键返回<偏心测量>界面。
 - 按[XYZ]键或[HVD]键可使测量结果在坐 标或角度距离显示间切换。
 - ·按[NO]键返回前一显示界面。
 - •[记录]键用于存储测量结果。

1 "28.记录数据"

20.2 角度偏心测量

角度偏心测量功能是先在尽可能靠近测量点并位于同一圆周的左侧或右侧位置上设立偏心 点,通过对偏心点的距离测量和对测量点的角度测量来获得对测量点的测量值。

- 在照准测量点 A0 时,即可采用与偏心点相同垂直角,也可采用俯仰望远镜时所得垂直角。
- 采用俯仰望远镜时所得垂直角时,斜距(SD)、高差(VD)和 Z 坐标(Z)会随照准高度的变化而变化。

角度偏心测量步骤

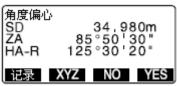
- 选取测量点附近一通视点作为偏心点(使 测站至偏心点和至测量点的距离大致相 等,棱镜与测量点大致等高)并在其上设 立棱镜。
- 2. 在测量模式第3页菜单下按[**偏心**]键进入< 偏心测量>界面。
- 3. 选取"测站定向"并输入测站数据完成测 站设立。
 - "13.1 输入测站和后视方位角数据"
 - •若直接计算测量点 A0 的地面点 A1 的坐标,需输入仪器高和照准高度。
 - 若计算测量点 A0 坐标,只需输入仪器 高(照准高度为"0")。

- 4. 选取"角度偏心"。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。

17.2 整平仪器"

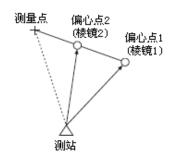
- 照准偏心点上的棱镜后按[观测]键测量。
 屏幕显示测量结果后按[停止]键停止测量。
- 6. 转动仪器照准部精确照准测量点方向后按 [OK]键。

屏幕上显示至测量点的距离值和角度值。


- 按[XYZ]键或[HVD]键可使测量结果在坐标或角度距离间切换显示。
- · 按[NO]键返回前一显示界面。
- •[记录]键用于存储测量结果。

"28.记录数据"

7. 按[**YES**]键结束测量返回<偏心测量>界面。



20.3 双距偏心测量

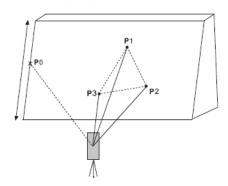
双距偏心测量功能通过对与测量点位于同一空间直线上的两个偏心点(棱镜 1 和棱镜 2)的测量,并在输入棱镜 2 至测量点间的距离后获得对测量点的测量值。

双距偏心测量步骤

- 1. 在与测量点位于同一空间直线的位置上设置棱镜 1 和棱镜 2, 量取棱镜 2 至测量点间的距离。
- 2. 在测量模式第3页菜单下按[**偏心**]键进入<偏心测量>界面。
- 3. 选取"测站定向"并输入测站数据完成测 站设立。
 - "13.1 输入测站和后视方位角数据"

- 4. 选取"双距偏心"。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。
 - 17 "7.2 整平仪器"
- 5. 照准棱镜 1 后按[**观测**]键进行测量。 屏幕上显示测量结果后按[**YES**]键确认。
- 6. 照准棱镜 2 后按[**观测]**键进行测量。 屏幕上显示出测量结果后按[**YES**]键确认。
- 7. 输入棱镜 **2** 至测量点间的距离后按**{ENT}** 键,屏幕上显示出测量点的坐标。

N 10.480 E 20.693 Z 15.277 记录 HVD NO YES


- 8. 按[**YES**]键结束测量返回<偏心测量>界 面。
 - 按[XYZ]键或[HVD]键可使测量结果在坐 标或角度距离显示间切换。
 - ·按[NO]键返回棱镜 1 测量显示界面。
 - •[记录]键用于存储测量结果。
 - "28.记录数据"

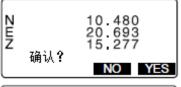
Note

- 如果在其他模式下已完成测站的设置,则可在选取所需偏心测量方法后直接实施测量。

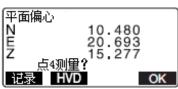
20.4 平面偏心测量

平面偏心测量功能利用测定的 P1、P2 和 P3 三点定义一个平面,然后通过角度测量方法求取望远镜方向线与平面交点 P0 的观测值结果。

•对 P1、P2 和 P3 点测量时目标高自动设置为"0"。

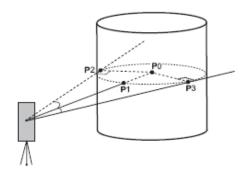

平面偏心测量步骤

- 1. 在测量模式第3页菜单下按[**偏心**]键进入< 偏心测量>界面。
- 2. 选取"测站定向"并输入测站数据完成测站设立。
 - "13.1 输入测站和后视方位角数据"
- 3. 选取"平面偏心"。
- 4. 照准 P1 点后按[**观测**]键测量。



屏幕显示测量结果后按[YES]键确认。

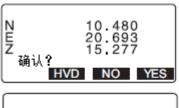
- 5. 同样照准 P2 和 P3 点按[观测]键测量。 屏幕显示测量结果后按[YES]键确认完成 平面的定义。
- 6. 转动望远镜照准待测点方向,随着仪器的 转动屏幕实时显示望远镜方向线与所定义 平面的交点的测量结果,此时可进行如下 操作:
 - 按[XYZ]键或[HVD]键可使测量结果在坐标或角度距离显示间切换。
 - •按[记录]键保存显示的测量结果。
 - 1 "28.记录数据"
- 7. 重复步骤 6 完成全部点测量后按[**OK**]键结束返回<偏心测量>界面。
 - 按[**OK**]键退出后所做的平面定义将被取 消。



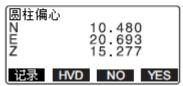
20.5 圆柱偏心测量

圆柱偏心测量功能通过对圆柱体中线点 P1、边缘点 P2 和 P3 的观测,求取圆柱中心点 P0 的观测值结果。

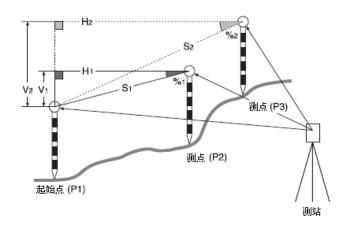
•圆柱中心点 P0 方向的方位角值等于边缘点 P1 和 P2 方位角值的均值。


平面偏心测量步骤

- 1. 在测量模式第3页菜单下按[**偏心**]键进入< 偏心测量>界面。
- 2. 选取"测站定向"并输入测站数据完成测 站设立。
 - "13.1 输入测站和后视方位角数据"
- 3. 选取"圆柱偏心"。
- 4. 照准中线点 P1 点后按[观测]键测量。


屏幕显示测量结果后按[YES]键确认。

- 按[XYZ]键或[HVD]键可使测量结果在 坐标或角度距离显示间切换。
- 5. 照准左边缘点 P2 后按[OK]键测量。
- 6. 照准右边缘点 P3 后按[OK]键测量。
- 7. 屏幕显示圆柱中心点 P0 的坐标,按[记录] 键后按[OK]键保存显示的测量结果并返回 <偏心测量>界面。
 - 按[YES]键不保存测量结果返回<偏心测量>界面。
 - 按[NO]键返回步骤 3。



21. 对边测量

对边测量功能用于在不搬动仪器的情况下,直接测定多个测点相对于某一点(起始点)间的斜距 S、平距 H 和高差 V。

- 最后测量的点可以设置为其后续测点的起始点。
- 测点与起始点间的高差也可以坡度%形式来显示。


21.1 多点间距离测量

多点间的距离即可以通过直接测量点的坐标获得,也可以通过输入点的坐标后计算获得,还可以采用两种方法的组合,例如通过测量起始点的坐标和输入测点的坐标来获得。

观测法对边测量步骤

- 在测量模式第 3 页菜单下按[对边]键后选取"对边测量"。
- 2. 照准起始点上的棱镜,按**[观测]**键测量。 显示测量结果后按**[停止]**键停止测量。
 - 如果仪器已经进行过距离测量,则最后的距离测量值将被视为至起始点的距离而直接转至步骤3显示界面。

21.对边测量

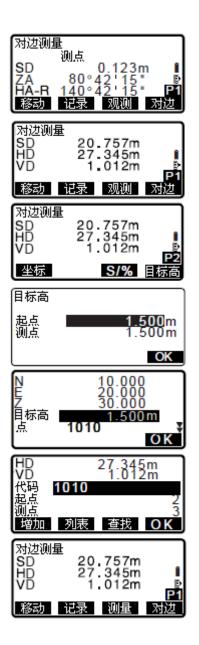
 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。

17.2 整平仪器"

- 3. 照准测点后按[对边]键测量。
 - ·[记录]键用于保存测量结果。

屏幕显示如下测量值:

SD: 测点与起始点间的斜距值 HD: 测点与起始点间的平距值 VD: 测点与起始点间的高差值


- •[**目标高**]键用于输入起始点和测点的目标高,输入后按[**OK**]键。
- [坐标]键用于输入起始点和测点的坐标 值来获得对边测量结果。

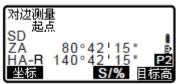
一"输入法对边测量步骤"

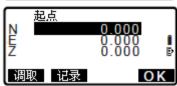
- •按[记录]键显示右图所示界面,按[OK] 键可保存测点的测量结果。
- •[OK]键用于保存对边测量结果。
- {ESC}键用于不保存对边测量结果继续 其他测点的测量。

当起始点或测点无点名时无法保存对边测量结果,因此务必在保存前设定点名。

4. 照准下一测点并按**[对边]**键对测点进行测量。

以同样方法测量多个测点与起始点间的斜 距、平距和高差。


- •[S/%]键用于显示测点与起始点间的坡度 值。
- [观测]键用于对起始点的重新测量。
- 按**[移动]**键可将最后的测量点设为后面 测量的新起始点。
 - 1 "21.2 改变起始点"
- 5. 按{ESC}键结束对边测量。


输入法对边测量步骤

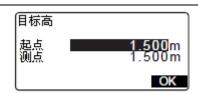
- 在测量模式第 3 页菜单下按[对边]键后选取"对边测量"。
- 2. 在第2页菜单下按[坐标]键。
- 3. 输入起始点的坐标后按[OK]键。
 - •[调取]键用于调用内存中已知坐标数据。 "13.1 输入测站和后视方位角数据"
- 4. 选取"测点"后按**{ENT}**键进入测点坐标输入界面。
- 5. 输入测点的坐标后按[**OK**]键。 屏幕显示以下各值:

SD: 测点与起始点间的斜距值 HD: 测点与起始点间的平距值 VD: 测点与起始点间的高差值

对边测量 起点 测点

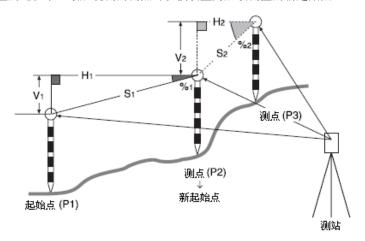
21.对边测量

- •[目标高]键用于输入起始点和测点的目 标高,输入后按[OK]键。
- •[坐标]键用于重新输入起始点和测点的 坐标值。
- ·[记录]键用于保存对边测量结果。
- •[S/%]键用于显示测点与起始点间的坡度 值。
- [观测]键用于对起始点的重新测量。
- •观测完某测点后按[移动]键可将该点设 为后面测量的新起始点。



"21.2 改变起始点"

6. 按{ESC}键结束对边测量。



• 当起始点或测点无点名时无法保存对边测量结果,因此务必在保存前设定点名。

21.2 改变起始点

在对边测量的过程中,最后观测的测点可以被设置为后续测量的新起始点。

改变起始点步骤

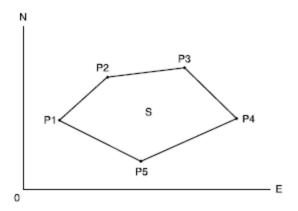
- 1. 按前述步骤进行对边测量。
 - "21.1 多点间距离测量"
- 2. 在完成某一测点测量后按**[移动]**键并按 **[YES]**键确认。
 - ·按[NO]键取消改变起始点。

- 3. 输入起始点、测点目标高后按[**OK**]键将最后测点设置为后续测量的新起始点。 按前述步骤继续进行对边测量。
 - **(21.1** 多点间距离测量"

22. 面积计算

面积计算功能通过 **3** 个或多个点的坐标数据计算出由这些点连线构成的封闭图形的面积 (平面积和斜面积)。所用坐标数据可以是直接测量所得,也可以手工方式输入。

输入值


输出值

坐标值: P1(N1, E1, Z1)

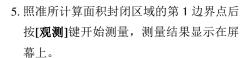
面积: S(平面积和斜面积)

... ...

P5 (N5, E5, Z5)

- 计算点数: 3~50 个点。
- 面积的计算采用构成该封闭图形的一系列有顺序点的坐标来进行,所用点可以是直接观测点,也可以是手工预先输入仪器内存的点。

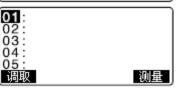
10

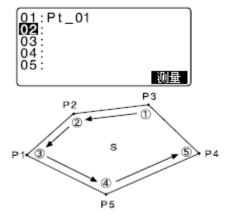

- 计算面积时, 若使用的点数少于 3 个点将出现无法计算错误。
- •在指定构成图形的点名时,必须按顺时针或逆时针方向顺序给出,否则计算结果不正确。 例如由点名 1、2、3、4、5 和点名 5、4、3、2、1 指定的为同一区域。

🔟 斜面积

由最先指定的3个点确定所求面积图形的斜面,后面指定的点均垂直投影至该斜面上进行面积计算。

观测法面积计算步骤

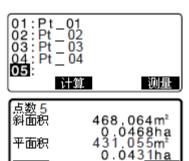

- 1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"面积计算"。
- 悬高测量 面积计算 直线放祥 弧线放祥 点投影 点到线测量
- 2. 选取"测站定向"后输入测站数据。
 - ℃ "13.1 输入测站和后视方位角数据"
- 3. 选取"面积计算"。
- 4. 按[测量]键进入测量界面。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。
 - "7.2 整平仪器"


- •[记录]键用于保存测量结果。
- 6. 按[**OK**]键将测量结果作为第一点"01"的 坐标值。
- 7. 重复步骤 4 至 6,按顺时针或逆时针方向顺序观测完全部边界点。

例如由边界点 1、2、3、4、5 和由边界点 5、 4、3、2、1 所定义的为同一区域。

当观测的已知点数达到足以计算面积点数时,屏幕显示出[**计算**]键。

8. 按[计算]键计算面积并显示结果。


点 数: 边界点总点数。 斜面积: 斜面面积值。 平面积: 平面面积值。 m²: 平方米。

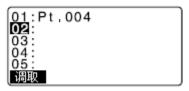
ha : 公顷。

- 9. 按[**OK**]键结束面积计算返回<常用菜单> 界面。
 - •[记录]键用于保存计算结果。

输入法面积计算步骤

- 1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"面积计算"。
- 2. 在<面积计算>界面下选取"面积计算"。
- 3. 按[调取]键进入坐标数据表界面。
 - 点、坐标、测站:存储在当前作业或坐标作业中的已知坐标数据。

记录


4. 在坐标数据表中选取第 1 边界点对应的点 号后按**[ENT]**键。

调取的点被作为1号边界点。

5. 重复步骤 3 至 4,按顺时针或逆时针方向顺序调取完全部边界点的坐标。

当调取的已知点数达到足以计算面积点数时,屏幕显示出[**计算**]键。

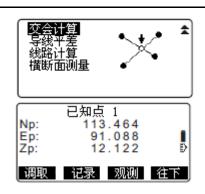
6. 按[计算]键计算面积并显示结果。

点数5 斜面积 468.064m² 0.0468ha 平面积 431.055m² 0.0431ha 记录 OK

- 7. 按[**OK**]键结束面积计算返回<常用菜单> 界面。
 - ·[记录]键用于保存计算结果。

Note

• 面积计算除了在[**菜单**]下进行外,还可将[**面积**]功能定义到测量模式的软键上后进行。 **[面积**]键定义:"33.3 键功能定义"


23. 交会计算

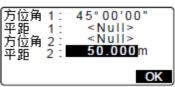
交会计算功能通过指定的两个已知点、以及与已知点相连线段的长度或方位角(如下图所示)来求取两直线交点的坐标。

交会计算步骤

- 在测量模式第 2 页菜单下按[菜单]键后 选取"交会计算"。
- 2. 输入已知点 1 的坐标值后按[往下]键。
 - •[调取]键用于调用内存中已知坐标数据。 「"13.1 输入测站和后视方位角数据"
 - •[记录]键用于保存输入的坐标数据。
 - [观测]键用于对指定点的测量。
 - 如果仪器倾斜超出倾斜补偿范围,屏幕 会显示图形气泡界面,此时应对仪器进 行整平。
 - 17.2 整平仪器"

- 3. 输入已知点 2 的坐标值后按[OK]键。
 - [观测]键用于对指定点的测量。
- 4. 输入过已知点 1 和已知点 2 线段的方位 角或平距值。

每一已知点只需输入方位角或偏距值二 者之一。


- 当光标定位于"方位角 1"或"方位角 2"栏时屏幕显示[坐标]键,用于输入 计算方位角的坐标值。
- 按[观测]键可对指定点进行测量。
- 5. 按[OK]键计算并显示交点的坐标值。
 - 计算结果存在双交点时屏幕会显示[**其 它**]功能键。
 - ௴" 观交点的情况"
 - •[放**样**]键用于对计算所得交点实施放样 测量。
 - 15.放样测量"
- 6. 按{ESC}键结束交会计算。

Note

•交会计算除了在[菜单]下进行外,还可将[交会]功能定义到测量模式的软键上后进行。

[文会] 键定义: "33.3 键功能定义"

🔟 双交点的情况

在指定了已知点1和已知点2后:

- •输入"方位角 1"和"平距 2"(或者"平距 1"和"方位角 2") 计算结果出现双交点情况时,距设定了方位角的已知点较远的交点为交点 1,较近的 交点为交点 2。
- •输入"平距1"和"平距2" 计算结果出现双交点情况时,位于已知点1与已知点2连线右侧的交点为交点1,左侧的交点为交点2。

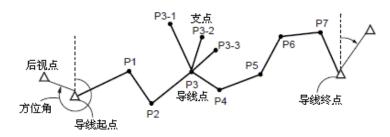
🚺 交会测量注意事项

在下列状况下无法计算交点的坐标:

方位角 1=方位角 2 时:

方位角 1-方位角 2=±180° 时;

平距 1=0 平距 2=0 时:


已知点1和已知点2的坐标相同时。

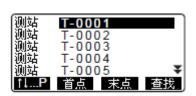
24. 导线平差

导线测量从对后视点和前视点的观测开始,然后将测站迁到前视点上,把上一测站点作为后视点,对其和另一前视点进行观测,重复该程序直至完成导线线路的测量。

导线平差功能用于对按上述程序完成的一系列导线点及其支点坐标(如下图)的计算,需要时可进行平差处理,计算完成后给出计算结果及其精度数据。

□ 可处理的导线类型:" □ 导线类型"

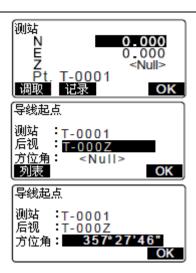
导线平差步骤

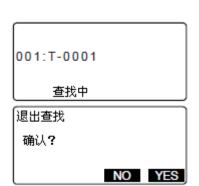

 开始导线平差计算前,首先对导线点进行 观测并将结果记录在仪器内存中。

厂 "28.4 记录距离数据",

"28.6 记录距离和坐标数据"

- 在测量模式第 2 页菜单下按[菜单]键后选取"导线平差"。
- 3. 在"测站"栏内输入导线起点的点名后按 **(ENT)**键。
 - •按[**列表**]键可列出当前作业中的测站名 表,从表中可选取所需点。
 - **厂** 各功能键的使用:"13.1输入测站和 后视方位角数据"




24.导线平差

- 当内存中无指定测站点坐标数据时,可以手工方式输入后按[OK]键。
- 4. 在"后视"栏内输入导线起点的后视点名 后按**[ENT]**键。

当内存中保存有后视点坐标数据时,CX 将自动计算出后视方位角并显示在屏幕 上。

- 当内存中无指定后视点坐标数据时,可以手工方式输入后按[OK]键计算后视方位角。
- 当无后视点坐标数据而需输入后视方位 角时,按{▼}键将光标移至"方位角" 栏内后输入方位角值。
- 5. 在步骤 4 下按[OK]键, CX 开始导线线路 的自动查找。步骤 1 中观测的各导线点将 按观测时的顺序显示在屏幕上。
 - 按{ESC}可中断导线线路的查找,此时, 仪器只根据查找到的导线点进行线路计算。
 - 当查找中遇到一具有已知坐标或者具有 多个前视点的导线点时,导线线路的查 找将停止。此时,按[列表]键后选取作 为下一前视点的导线点。

- 6. 按[OK]确认自动查找形成的导线线路。
- 7. 在"前视"栏内输入导线终点处前视点的 点名后按**[ENT]**键。

CX 计算出前视方位角并显示在屏幕上。

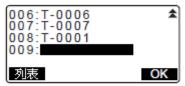
- 当无前视点坐标数据而需直接输入前视方位角时,按{▼}键将光标移至"方位角"栏内后输入方位角值。
- 8. 按[**OK**]键确认, **CX** 计算并显示导线的精度数据。

角度差 : 导线角度闭合差。

距离差 : 导线距离闭合差。

相对差 : 导线全长相对闭合差分母

(距离总和/距离闭合差)。


N 坐标差: 导线 N 坐标闭合差。

E 坐标差: 导线 E 坐标闭合差。

- Z 坐标差: 导线 Z 坐标闭合差。
- •按[**选项**]键可选取导线平差方法。 供选取方法如下("*"为出厂设置):
 - (1) 坐标(坐标平差方法) 按距离分配* 按增量分配
 - (2) 角度(角度平差方法) 加权分配* 平均分配 不平差
 - (3) 高程(高程平差方法) 加权分配* 平均分配

不平差

☞ "Ѿ 平差方法"

导线终点 测站 : T-0001 前视 : <mark>T-0002</mark> 方位角: 335°27'46" 列表 **OK**

平差选项

| 坐标 : | 按距离分配 | 角度 : 加权分配 | 高程 : 加权分配

24.导线平差

9. 平差计算时首先进行的是角度平差。按[**平 差**]键以步骤 8 中"(2)角度"选取的方法进行角度平差计算,平差结果显示在屏幕上。

• 当步骤 8 中"(2)角度"选取的方法为"不平差"时, CX 将只进行坐标和高程平差。

10. 检查并确认角度平差结果后,按**[平差]** 键以步骤 8 中"(1)坐标"和"(3)高程" 选取的方法分别开始坐标和高程平差计 算。平差结束后各导线点的平差值被保存在当前作业中。

角度平差后

角度差: 0°00'00" 距离差: 0,006 相对差: 89788

が日か12 **选项** 89788 ₹

导线平差

记录中… 7

Note

•导线平差除了在[**菜单**]下进行外,还可将[**导线**]功能定义到测量模式的软键上后直接按[**导 线**]键进行。

[**导线**]键定义: "33.3 键功能定义"

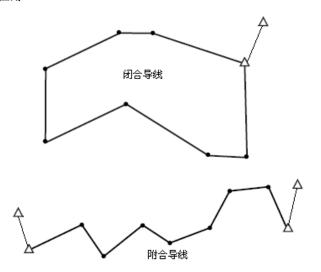
导线平差结果及其数据将作为注记记录保存在当前作业中,闭合差分配值也以普通坐标数据形式保存在当前作业中。

导线线路记录(3): 1. 导线起点和终点点名

2. 后视点名和后视方位角

3. 前视点名和前视方位角

平差设置记录(1): 选取的导线闭合差分配方法


闭合差记录(2×2): 1. 导线角度闭合差和全长相对闭合差分母

2. 导线坐标闭合差

坐标平差记录: 各导线点坐标平差值

🚺 导线类型

CX 可处理的导线类型包括闭合导线和附合导线,在处理时,闭合导线需要输入导线 起点处的方位角,对于附合导线除输入导线起点处的方位角外,还需要输入导线终点 处的方位角。

🚺 导线线路自动查找

导线线路自动查找功能用于在内存数据中查找出一系列连续的导线点形成导线线路。 当出现同一点名具有多个观测值时,最新的观测值将被采用。导线线路自动查找功 能在下列情形下有效。

- 在测站上必须对至少一个后视点和一个前视点进行了观测。
- 前视点成为后续测量的测站点。
- 测站点成为后续测量的后视点。

当出现下列情况之一时,导线线路自动查找将停止,并可在人工指定下一导线点名后继续线路的自动查找。

- 当某导线点上出现多个前视导线点,即该导线点为导线结点时查找停止。
- 当前视导线点为导线起点时,该导线将被视为闭合导线而查找停止。
- 当最后测量的导线点为内存中的已知坐标点时,该导线点将被视为导线终点而查 找停止。

导线线路自动查找功能无法处理下面的情形:

• 当最后测量的导线点为导线线路上的点既不是导线起点也不是已知点时。

☑ 平差方法

下面就步骤8中坐标平差和误差分配选项进行介绍:

坐标平差

按距离分配:按导线边长比例进行坐标闭合差的分配。

N坐标改正值=
$$\frac{L}{TL}$$
 \times N坐标闭合差
E坐标改正值= $\frac{L}{TL}$ \times E坐标闭合差

式中: L 为导线边长度

TL 为导线线路总长度

按增量分配:按坐标增量比例进行坐标闭合差的分配。

N坐标改正值=
$$\frac{|\triangle N|}{\sum |\triangle N|} \times$$
 N坐标闭合差
E坐标改正值= $\frac{|\triangle E|}{\sum |\triangle E|} \times$ E坐标闭合差

式中: △N 为导线边 N 坐标增量

△E 为导线边 E 坐标增量

 $\Sigma \mid \triangle N \mid$ 为导线边 N 坐标增量绝对值之和

 $\Sigma \mid \triangle E \mid$ 为导线边 E 坐标增量绝对值之和

角度平差

加权分配: 根据前视距离和后视距离按下式进行角度闭合差的分配。

角度改正值 =
$$\frac{\left(\frac{1}{\text{前视距离}} + \frac{1}{\text{后视距离}}\right)}{\Sigma\left(\frac{1}{\text{前视距离}} + \frac{1}{\text{后视距离}}\right)} \times \text{角度闭合差}$$

平均分配:将角度闭合差平均分配至导线线路各角度上。

不平差 : 不进行角度平差。

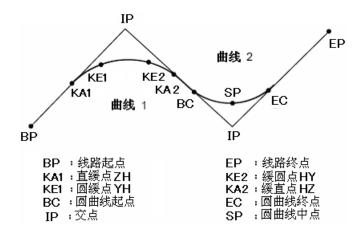
高程平差

加权分配:按距离比例进行高程闭合差的分配(类似于按距离进行坐标闭合差分配)。

平均分配:将高程闭合差平均分配至导线线路各导线点上。

不平差 : 不进行高程平差。

25. 线路计算

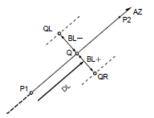

线路计算功能可用于土木、道路等工程中各种线路点、道路中桩点和边桩点平面坐标的计算, 计算结果可以记录至仪器内存作业中或在实地实施放样测量。

- 进行桩点放样测量时需要完成测站的设立和后视定向。
 - ☞ "13.1 输入测站和后视方位角数据"
- 在线路计算菜单下可进行测距参数的设置。
 - **『** "33.2 测距参数设置"
- 保存于仪器内存中的线路计算结果所用点名或代码只能在线路计算菜单下使用。

• 在线路计算中 Z 坐标值的空值 "Null"与 "0" 值是不同的。

送路计算中使用的符号与术语

25.1 设立测站


与其他测量作业一样,道路计算后放样测量之前必须进行测站的设立。在测量模式第2页菜单下按**[菜单]**键,选取"线路计算"进入<线路计算>菜单界面后选取"测站定向"。

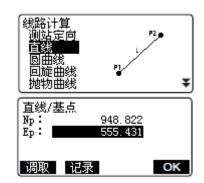
☞ 测站设立和定向:"13.1输入测站和后视方位角数据"

25.2 直线计算

直线计算功能用于由单一直线构成的线路的中桩点及其两侧边桩点平面坐标的计算,计算 所得坐标可直接进行放样测量。

计算时以直线起点 P1 为基准点,已知数据为基准点 P1 的坐标、交点 P2 的坐标或直线的 方位角 AZ,线路如下图所示:

P1:基准点(直线起点)


2:交点 L:中桩点至基准点距离。

BL: 边桩偏距(宽度,以下同)

QR/QL: 右、左边桩点

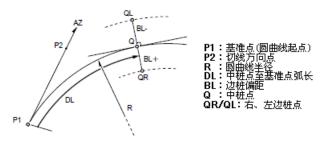
直线计算步骤

- 1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"直线"进入直线计算操作界面。
- 3. 输入直线起点(基准点)的坐标后按**[OK]** 键。
 - •按[调取]键可调用内存中的坐标数据。
 - "13.1 输入测站和后视方位角数据"
 - 按[记录]键可将输入的坐标数据存储至 仪器内存当前作业中。
 - "30.1 己知坐标输入与删除"

- 4. 输入直线交点 IP 的坐标或方位角后按**[OK]** 键。
 - 第2页菜单下的[方位角]键和[坐标]键,用于直线方位角或交点坐标输入的切换。
- 5. 在"基点桩号"和"中桩桩号"中分别输入基准点和待计算中桩点桩号(输入值范围: 0.000~9999.999m,桩号过大时可按夫掉相同公里数的方式处理)。
 - 也可以在"基点桩号"处输入"0"值, 在"中桩桩号"处输入待计算中桩点至 基准点的距离值 DL。
- 6. 按[**OK**]键进行中桩点 **Q** 的坐标计算,坐标 计算结果显示在屏幕上。
 - 显示的"方位角"为所计算中桩处切线 方向的方位角(为直线终点时可作为与 之相连线段计算时所需的起始方位角)。
 - 按[**边桩**]键后以左负右正方式输入边桩 偏距(宽度,以下同)值后按**[OK]**键便 可计算相应边桩点的坐标。
 - 按[记录]键可将计算结果存储至仪器内 存当前作业中。
 - ℃ "30.1 已知坐标输入与删除"
 - •按[**放样**]键可直接进行所计算点的放样 测量。
 - **广**"15.放样测量"
 - •按[**中桩**]键可继续下一中桩点坐标的计算。

25.线路计算

7. 按两次**[ESC]**键结束直线计算返回<线路计算>菜单界面。


Note

- 若在步骤 4 中先输入坐标值又输入方位角值,则按方位角优先的方式处理。
- "基点桩号"和"中桩桩号"值的输入范围: 0.000~9999.999m。

25.3 圆曲线计算

圆曲线计算功能用于由单一圆曲线构成的线路的中桩点及其两侧边桩点平面坐标的计算, 计算所得坐标可直接进行放样测量。

计算时以圆曲线起点 P1 为基准点,已知数据为基准点 P1 的坐标、切线点 P2 的坐标或切线方向的方位角 AZ、曲线的方向和半径 R,线路如下图所示:

圆曲线计算步骤

- 在测量模式第2页菜单下按[菜单]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"圆曲线"进入圆曲线计算界面。
- 输入圆曲线起点 P1 (基准点) 的坐标后按 [OK]键。

- 4. 输入圆曲线切线方向点 **P2** 的坐标或切线 方向的方位角后按**IOKI**键。
 - •第2页菜单下的[方位角]键和[坐标]键, 用于切线方位角或切线点 P2 坐标输入 的切换。
 - •按[调取]键可调用内存中的坐标数据。
 - 按[记录]键可将输入的坐标数据存储至 仪器内存当前作业中。
- 5. 选取圆曲线的"曲线"方向,输入圆曲线 "半径"、"基点桩号"和待计算"中桩桩 号 (输入值范围: 0.000~9999.999m,桩 号过大时可按去掉相同公里数的方式处 理)各值。
- 6. 按**[OK]**键计算中桩点的坐标,计算结果显示在屏幕上。
 - 显示的"方位角"为所计算中桩处切线 方向的方位角(为曲线终点时可作为与 之相连线段计算时所需的起始方位角)。
 - 按[边桩]键后以左负右正方式输入边桩 偏距值后按[OK]键便可计算相应边桩点 的坐标。
 - **『** "25.2 直线计算"
 - 按[记录]键可将计算结果存储至仪器内 存当前作业中。
 - "30.1 已知坐标输入与删除"
 - 按**[放样]**键可直接进行所计算点的放样 测量。
 - **『** "15.放样测量"

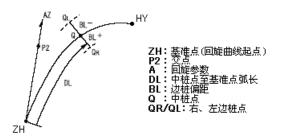
圆曲线/中桩 曲线 右转 半径 60.000m 基点桩号 477.180m 中桩桩号 676.591m OK

圆曲线/中桩 N 3062.415 E 7254.902 方位角 42°42′38″ 边桩 记录 放样 中桩

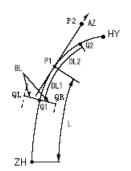
25.线路计算

7. 按两次 {ESC} 键结束圆曲线计算返回<线 路计算>菜单界面。

Note


- •"曲线": 曲线方向的选择值为"左转"或"右转"。
- "半径" 值的输入范围: 0.000~9999.999m。

25.4 回旋曲线计算


回旋曲线计算功能用于由单一回旋曲线构成的线路的中桩点及其两侧边桩点平面坐标的计算,计算所得坐标可直接进行放样测量。

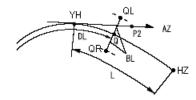
计算时以回旋曲线上某点(起点 ZH、任意点或终点 HY)为基准点 P1,根据基准点 P1的 坐标和曲线要素来求取所需桩点的坐标。仪器提供了三种不同基准点情况下的计算方法,使用时应根据情况来选用相应的计算方法:

• "ZH_HY 计算法 1"用于由直缓点过渡至缓圆点的单一回旋曲线桩点平面坐标的计算。 计算时以回旋曲线起点 ZH 为基准点,已知数据为基准点 ZH 的坐标、交点 IP 的坐标或 至交点 IP 方向的方位角 AZ、曲线方向和和回旋参数 A,线路如下图所示:

• "ZH_HY 计算法 2"用于由直缓点过渡至缓圆点的单一回旋曲线桩点平面坐标的计算。 计算时以回旋曲线起点 ZH 与终点 HY 间任意点为基准点 P1,已知数据为基准点 P1 的 坐标、过基准点 P1 切线方向的方位角 AZ、曲线的方向和回旋参数 A、起点 ZH 至基准 点 P1 的弧长 L,线路如下图所示:

P1:基准点(回旋曲线上任意点)

P2: 切线点 A : 回旋参数


L :起点Z)至基准点弧长

Q1、Q2:中桩点

DL1、DL2:中桩点至基准点弧长

QR/QL:右、左边桩点

• "YH_HZ 计算法"用于由圆缓点过渡至缓直点的单一回旋曲线桩点平面坐标的计算。 计算时以回旋曲线起点 YH 为基准点,已知数据为基准点 YH 的坐标、过基准点 YH 切线 方向的方位角 AZ、曲线方向和回旋参数 A、缓和曲线的弧长 L,线路如下图所示:

YH :基准点(回旋曲线起点) AZ :过基准点切线方位角

A : 回旋参数 L : 缓和曲线弧长 Q : 中桩点

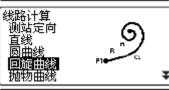
DL :中桩点至基准点弧长 BL :边桩偏距 QR/QL:右、左边桩点

- 当下列条件不能满足时, 桩点坐标计算将无法进行:
 - "ZH_HY 计算法 1"要求: 0≤曲线弧长≤2A
 - "ZH HY 计算法 2"要求: 0≦起点至基准点弧长≦3A

0≦起点至中桩点弧长≦2A

"YH_HZ 计算法"要求: 0≦曲线弧长≦3A

0≦起点至中桩点弧长≦2A


注:回旋参数 A =√(曲线弧长 L×半径 R)

ZH-HY计算法 1 计算步骤

- 1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"回旋曲线"进入回旋曲线计算菜单 后选取"ZH HY 计算法 1"。

- 3. 输入回旋曲线起点 ZH (基准点) 的坐标后 按[**OK**]键。
- 4. 输入回旋曲线交点 IP 的坐标后按[OK]键。
 - 在交点输入屏幕下按{FUNC}键进入第二 页菜单,再按[方位角]键后可输入回旋 曲线起点切线方向的方位角。
 - 按[调取]键可调用内存中的坐标数据。
 - 按[记录]键可将输入的坐标数据存储至 仪器内存当前作业中。
- 5. 选取回旋曲线的"曲线"方向,输入回旋 "参数"、"基点桩号"和待计算"中桩桩 号 (输入值范围: 0.000~9999.999m,桩 号过大时可按去掉相同公里数的方式处 理)各值。
- 6. 按[**OK**]键计算中桩点的坐标,计算结果显示在屏幕上。

坐标

OK

- 显示的"方位角"为所计算中桩处切线 方向的方位角(为曲线终点时可作为与 之相连线段计算时所需的起始方位角)。
- 按[边桩]键后以左负右正方式输入边桩 偏距值后按[OK]键便可计算相应边桩点 的坐标。
 - **少** "25.2 直线计算"
- 按[记录]键可将计算结果存储至仪器内 存当前作业中。
 - ☞ "30.1 已知坐标输入与删除"
- 按**[放样]**键可直接进行所计算点的放样 测量。
 - **广** "15.放样测量"
- 按[**中桩**]键可继续下一中桩点坐标的计 算。
- 7. 按三次**{ESC}**键结束回旋曲线计算 返回<线路计算>菜单界面。

Note

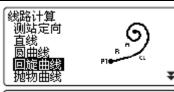
- •"曲线": 曲线方向的选择值为"左转"或"右转"。
- "参数"值的输入范围: 0.000~9999.999m。
- 桩号值的输入范围: 0.000~9999.999m。

ZH-HY计算法 2 计算步骤

- 1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"回旋曲线"进入回旋曲线计算菜单 后选取"ZH HY 计算法 2"。
- 3. 输入回旋曲线上基准点 P1 的坐标后按 **[OKI**键。
 - 按[调取]键可调用内存中的坐标数据。
 - 按[记录]键可将输入的坐标数据存储至 仪器内存当前作业中。
- 4. 输入过基准点 P1 切线上点的坐标后按 **[OK]**键。
 - 在切线方向输入屏幕下按{FUNC}键进入第2页菜单,再按[方位角]键后可输入切线方向的方位角。
- 5. 选取回旋曲线的"曲线"方向,输入回旋"参数"、"起_基弧长"(曲线起点至基准点的弧长),以及在"基点桩号"和"基_中弧长"中分别输入"0"值和基准点至待计算中桩点的弧长值 DL(中桩点位于起点 ZH 与基准点 P1 之间时输负值,否则输正值)等值。
- 6. 按**[OK]**键计算中桩点的坐标,计算结果显示在屏幕上。

回旋曲线 ZH HY计算法 1 **ZH HY计算法 2** YH_HZ计算法

回旋曲线/基点 Np: 3039.641 Ep: 7362.711


- 显示的"方位角"为所计算中桩处切线 方向的方位角(为曲线终点时可作为与 之相连线段计算时所需的起始方位角)。
- 按[**边桩**]键后以左负右正方式输入边桩 偏距值后按[**OK**]键便可计算相应边桩点 的坐标。
 - **5** "25.2 直线计算"
- 按[记录]键可将计算结果存储至仪器内 存当前作业中。
 - ☞ "30.1 已知坐标输入与删除"
- 按**[放样]**键可直接进行所计算点的放样 测量。
 - ☞ "15.放样测量"
- 按[**中桩**]键可继续下一中桩点坐标的计 算。
- 7. 按三次**{ESC}**键结束回旋曲线计算返回< 线路计算>菜单界面。

Note

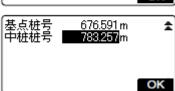
- "起_基弧长"值的输入范围: 0.000~9999.999m。
- "基_中弧长"值的输入范围: -999.999~9999.999m。

YH-HZ计算法计算步骤

- 1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"回旋曲线"进入回旋曲线计算菜单 后选取"YH HZ 计算法"。
- 3. 输入回旋曲线基准点 YH 的坐标后按[**OK**] 键。
 - 按[调取]键可调用内存中的坐标数据。
 - 按[记录]键可将输入的坐标数据存储至 仪器内存当前作业中。
- 4. 输入过基准点 YH 切线上任一点的坐标后 按[**OK]**键。
 - 在切线方向输入屏幕下按{FUNC}键 进入第2页菜单,再按[方位角]键后 可输入切线方向的方位角。
- 5. 选取回旋曲线的"曲线"方向,输入回旋 "参数"、"终_起弧长"、"基点桩号"和 待计算"中桩桩号"(输入值范围: 0.000~ 9999.999m,桩号过大时可按去掉相同公里 数的方式处理)各值。
- 6. 按**[OK]**键计算中桩点的坐标,计算结果显示在屏幕上。
 - 显示的"方位角"为所计算中桩处切线 方向的方位角(为曲线终点时可作为与 之相连线段计算时所需的起始方位角)。

回旋曲线 ZH_HY计算法 1 ZH_HY计算法 2 YH_HZ计算法

回旋曲线/基点


Np: 3062.415 Ep: 7254.902


调取 记录

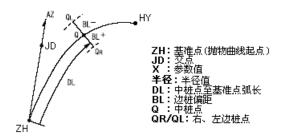
OK

- 按[边桩]键后以左负右正方式输入边桩 偏距值后按[OK]键便可计算相应边桩点 的坐标。
 - **『** "25.2 直线计算"
- 按[记录]键可将计算结果存储至仪器内 存当前作业中。
 - ☞ "30.1 已知坐标输入与删除"
- 按**[放样]**键可直接进行所计算点的放样 测量。
 - **『** "15.放样测量"
- 按[**中桩**]键可继续下一中桩点坐标的计 算。
- 7. 按三次**{ESC}**键结束回旋曲线计算返回< 线路计算>菜单界面。

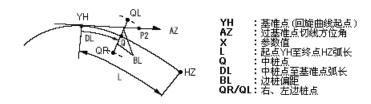
Note

- "终_起弧长"值的输入范围: 0.000~9999.999m。
- "基点桩号"和"中桩桩号"的输入范围: 0.000~9999.999m。

25.5 抛物曲线计算

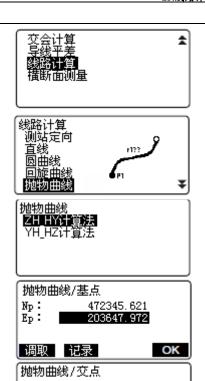

抛物线计算功能用于由单一抛物线构成的线路的中桩点及其两侧边桩点平面坐标的计算, 计算所得坐标可直接进行放样测量。

抛物线计算公式如下:


$$y = \frac{x^3}{6RX}$$

计算时根据抛物线的不同,仪器提供了两种不同情况下计算方法来求取所需桩点的坐标,使用时可根据已知数据情况来选用。

• "ZH_HY 计算法"用于由直缓点过渡至缓圆点的单一抛物线桩点平面坐标的计算。计算时已知数据为抛物曲线起点 ZH 的坐标、交点 JD 的坐标或切线方向的方位角 AZ、曲线方向、参数 X 和半径,线路如下图所示:


• "YH_HZ 计算法"用于由圆缓点过渡至缓直点的单一抛物线桩点平面坐标的计算。计算时已知数据为抛物曲线起点 YH 的坐标、过起点 YH 切线上点的坐标或切线方向的方位角 AZ、曲线方向、参数 X、曲线起点 YH 至终点 HZ 的弧长 L,线路如下图所示:

ZH-HY计算法计算步骤

- 1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"抛物曲线"进入抛物曲线计算菜单 后选取"ZH HY 计算法"。

- 3. 输入抛物曲线起点 ZH (基准点) 的坐标后 按[**OK**]键。
- 4. 输入抛物曲线交点 IP 的坐标后按[OK]键。
 - 在交点输入屏幕下按{FUNC}键进入第2 页菜单,再按[方位角]键后可输入抛物 曲线起点切线方向的方位角。
 - 按[调取]键可调用内存中的坐标数据。
 - 按[记录]键可将输入的坐标数据存储至 仪器内存当前作业中。
- 5. 选取抛物曲线的"曲线"方向,输入"参数 X"、"半径"、"基点桩号"和待计算"中桩桩号"(输入值范围: 0.000~9999.999m,桩号过大时可按去掉相同公里数的方式处理)各值。

0.3935

OK

方位角

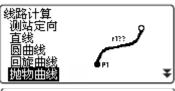
坐标

6. 按[**OK**]键计算中桩点的坐标,计算结果显示在屏幕上。

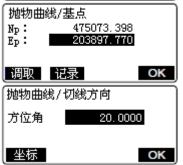
- 显示的"方位角"为所计算中桩处切线 方向的方位角(为曲线终点时可作为与 之相连线段计算时所需的起始方位角)。
- 按[**边桩**]键后以左负右正方式输入边桩 偏距值后按[**OK**]键便可计算相应边桩点 的坐标。
 - **『** "25.2 直线计算"
- 按[记录]键可将计算结果存储至仪器内存当前作业中。
 - ☞ "30.1 已知坐标输入与删除"
- 按**[放样]**键可直接进行所计算点的放样 测量。
 - **『** "15.放样测量"
- 按[**中桩**]键可继续下一中桩点坐标的计 算。
- 7. 按三次**{ESC}**键结束抛物曲线计算返回<线 路计算>菜单界面。

Note

- •"曲线": 曲线方向的选择值为"左转"或"右转"。
- "参数 X"和"半径"值的输入范围: 0.000~9999.999m。
- "基点桩号"和"中桩桩号"的输入范围: 0.000~9999.999m。


| 抛物曲线/中柱 |N 472365.620 |E 203648.215 |方位角 0°46′03″ | 送柱 记录 | 放样 中柱

YH-HZ计算法计算步骤

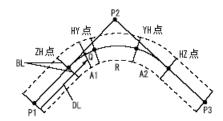

- 1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"抛物曲线"进入抛物曲线计算菜单 后选取"YH HZ 计算法"。

- 3. 输入抛物曲线起点 YH (基准点) 的坐标后 按[**OK**]键。
- 4. 输入抛物曲线切线点 IP 的坐标后按[**OK**] 键。
 - 在切线方向输入屏幕下按{FUNC}键进入第2页菜单,再按[方位角]键后可输入 抛物曲线起点切线方向的方位角。
 - •按[调取]键可调用内存中的坐标数据。
 - 按[记录]键可将输入的坐标数据存储至 仪器内存当前作业中。
- 5. 选取回旋曲线的"曲线"方向,输入"参数 X"、"YH_HZ 弧、"、"基点桩号"和待计算"中桩桩号"(输入值范围: 0.000~9999.999m,桩号过大时可按去掉相同公里数的方式处理)各值。

OK

- 6. 按[**OK**]键计算中桩点的坐标,计算结果显示在屏幕上。
 - 显示的"方位角"为所计算中桩处切线 方向的方位角(为曲线终点时可作为与 之相连线段计算时所需的起始方位角)。
 - 按[**边桩**]键后以左负右正方式输入边桩 偏距值后按[**OK**]键便可计算相应边桩点 的坐标。
 - **『** "25.2 直线计算"
 - 按[记录]键可将计算结果存储至仪器内 存当前作业中。
 - ☞ "30.1 已知坐标输入与删除"
 - 按**[放样]**键可直接进行所计算点的放样 测量。
 - **『** "15.放样测量"
 - 按[**中桩**]键可继续下一中桩点坐标的计 算。
- 7. 按三次**[ESC]**键结束抛物曲线计算返回<线 路计算>菜单界面。

Note


- •"曲线": 曲线方向的选择值为"左转"或"右转"。
- "参数 X"的输入范围: 0.000~9999.999m。
- "YH_HZ 弧长"、"基点桩号"和"中桩桩号"的输入范围: 0.000~9999.999m。

| 抛物曲銭/中柱 | M 475090.311 | E 203905.186 | 方位角 26°58′26″ | 边柱 记录 | 放祥 中柱

25.6 三点计算法

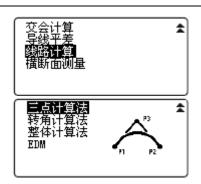
三点计算法功能用于由起点、交点和终点三个点构成的线路的主桩点、任意中桩点及其两侧边桩点平面坐标的计算,计算所得坐标可直接进行放样测量。

计算时以线路起点 P1 为基准点,已知数据为基准点 P1、交点 P2 和线路终点 P3 的坐标、第一、二回旋参数 A1、A2 和圆曲线半径 R,线路如下图所示:

P1: 起点(基准点)

74 : 父忌 73 : 终点

A1: 第1回旋参数 A2: 第2回旋参数 R: 圆曲线半径 Q:中桩点


BL: 边桩偏距

DL: 中桩至基准点距离

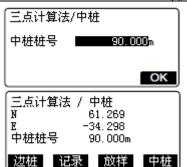
- •若输入回旋曲线"参数 1"(A1)、"数 2"(A2)和"半径"(R)值,则定义的为双回旋曲线线路(基本形曲线),可求取得线路主桩点坐标包括线路的直缓点 ZH、缓圆点 HY、圆缓点 YH 和缓直点 HZ 的坐标。
- •若只输入回旋曲线"参数 1"(A1)和"参数 2"(A2),"半径(R)值为<Null>,则定义的为无圆曲线线路(凸形曲线),可求取的主桩点坐标包括线路的直缓点 ZH、缓曲终点 HY 和缓直点 HZ 的坐标。
- •若只输入"半径"(R)值,回旋曲线"参数1"(A1)和"参数2"(A2)值为<Null>,则定义的为圆曲线线路,可求取的主桩点坐标包括圆曲线起点BC和终点EC的坐标。

三点计算法计算步骤

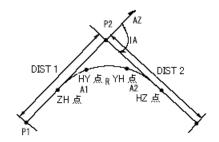
- 在测量模式第2页菜单下按[菜单]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"三点计算法"进入<三点计算法>界面。


- 3. 输入线路起点 P1(基准点)坐标后按[**OK**] 键。
 - 按[调取]键可调用内存中的坐标数据。
 - 按[记录]键可将输入的坐标数据存储至 仪器内存当前作业中。
- 4. 输入交点 P2 的坐标后按[OK]键。
- 5. 输入线路终点 P3 的坐标后按[OK]键。

- 6. 仪器根据线路的基准点 P1、交点 P2 和终 点 P3 的坐标计算出线路的转角、方向、 基点至交点距离和交点至终点距离,确认 后按[OK]键。
 - ·如需修改数据按{ESC}键返回步骤 3。
- 7. 输入回旋"参数 1"、"参数 2"、圆曲线"半径"和"基点桩号"等曲线参数。
- 8. 按[**OK**]键,仪器计算主桩点坐标并显示结果。
 - •按[▶]键或[◀]键可在主桩点坐标显示界面<三点计算法/ZH>、<三点计算法/HY>、<三点计算法/HH>、<三点计算法/HZ>间进行切换。



- 9. 按[**中桩**]键并输入"中桩桩号"后按**[OK]** 键可计算并显示线路上任意中桩点的坐标。
 - 按[边桩]键后以左负右正方式输入边桩 偏距值后按[OK]键便可计算相应边桩点 的坐标。
 - **『** "25.2 直线计算"
 - 按[记录]键可将计算结果存储至仪器内 存当前作业中。
 - "30.1 已知坐标输入与删除"
 - 按**[放样]**键可直接进行所计算点的放样 测量。
 - **『** "15.放样测量"
 - 按[**中桩**]键可继续下一中桩点坐标的计 **5**。
- 10. 按三次{ESC}键结束三点线路计算返回 <线路计算>菜单界面。


Note

- •"曲线": 曲线方向的选择值为"左转"或"右转"。
- "参数"和"半径"值的输入范围: 0.000~9999.999m。
- "YH HZ 弧、"、"基点桩号"和"中桩桩号"的桩号值的输入范围: 0.000~9999.999m。
- 定义线路为无圆曲线线路时,步骤 8 中求得的主桩点为线路的直缓点 ZH、缓终点 HY 和缓直点 HZ。
- 定义的线路为圆曲线线路时,步骤 8 中求得的主桩点为圆曲线起点 BC 和终点 EC。

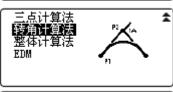
25.7 转角计算法

转角计算法功能用于由起点、交点和转角构成的线路的主桩点、任意中桩点及其两侧边桩 点平面坐标的计算,计算所得坐标可直接进行放样测量。

计算时以线路起点 P1 为基准点,已知数据为基准点 P1、交点 P2 的坐标(或 P1-P2 方向的方位角 AZ)、曲线方向、转角 IA、基准点 P1 至交点 P2 距离 DIST1、交点 P2 至终点的距离 DIST2、第一、二回旋曲线参数 A1、A2 和圆曲线半径 R,线路如下图所示:

P1 : 基准点(起点)

P2 : 交点 IA : 转角


DIST1: 基点至交点距离 DIST2: 交点至终点距离 A1 : 第1回旋参数 A2 : 第2回旋参数

R : 圆曲线半径

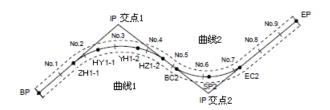
转角计算法计算步骤

- 在测量模式第2页菜单下按[菜单]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"转角计算法"进入<转角计算法>界面。
- 输入线路起点 P1(基准点)坐标后按[OK]
 键。
 - •按[调取]键可调用内存中的坐标数据。
 - 按[记录]键可将输入的坐标数据存储至 仪器内存当前作业中。
- 4. 输入交点 P2 的坐标后按[OK]键。
 - 按{FUNC}键进入第2页菜单,按[方位 角]键后可输入P1至P2方向的方位角。

5. 选取曲线"曲线"方向,输入"转角"、"基 _交距"、"交_终距"、第一回旋"参数1"、 第二回旋"参数2"、圆曲线"半径"和"基 点桩号"各值。

转角计算法

- 6. 按[**OK**]键,仪器计算主桩点坐标并显示结果。
 - •按[▶]键或[◀]键可在主桩点坐标显示界 面<一点转角/ZH>、<一点转角/HY>、< 一点转角/YH>、<一点转角/HZ>间进行 切换。
- 7. 按[**中桩**]键并输入"中桩桩号"后按**[OK]** 键可计算并显示线路上任意中桩点的坐标。
 - 按[**边桩**]键后以左负右正方式输入边桩 偏距值后按[**OK**]键便可计算相应边桩点 的坐标。
 - **广** "25.2 直线计算"
 - 按[记录]键可将计算结果存储至仪器内 存当前作业中。
 - "30.1 已知坐标输入与删除"
 - •按[**放样**]键可直接进行所计算点的放样 测量。
 - **广** "15.放样测量"
 - 按[**中桩**]键可继续下一中桩点坐标的计 算。
- 8. 按三次**{ESC}**键结束转角计算法计算返回 <线路计算>菜单界面。



Note

- 转角的输入范围: 0°~180°
- •"曲线": 曲线方向的选择值为"左转"或"右转"。
- "参数"和"半径"值的输入范围: 0.000~9999.999m。
- "基点桩号"和"中桩桩号"的桩号值的输入范围: 0.000~9999.999m。
- 定义线路为无圆曲线线路时,步骤 8 中求得的主桩点为线路的直缓点 ZH、缓终点 HY 和缓直点 HZ。
- 定义的线路为圆曲线线路时,步骤 8 中求得的主桩点为圆曲线起点 BC 和终点 EC。

25.8 整体计算法

整体计算法功能用于由一系列曲线段构成的整条线路的主桩点、任意中桩点及其两侧边桩点平面坐标的计算,计算所得坐标可直接进行放样测量。线路如下图所示:

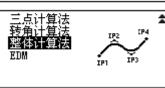
- 整体计算法实施过程包括如下内容:
 - 条件设置、输入线路元素(输入线路交点、输入曲线参数、查阅线路元素)、自动桩点 计算、任意桩点计算、线路中桩反算等。
- 在整体计算法计算中,每定义一条线路作为一个单独作业保存,每条线路所包含的曲线数可多达 16 段。
- 计算的线路主桩点、中桩点、边桩点的点数可多达 600 点。
- •除非进行了作业删除或数据初始化操作,否则所定义的线路数据即使在关机后也不会丢失。
 - 广作业删除方法: "29.2 作业删除"
 - €数据初始化方法: "33.5 仪器初始化"

- 当所有曲线参数 (第 1 回旋参数 A1、第 2 回旋参数 A2 和圆曲线半径 R) 均为 "<Null>" 时,无法计算曲线数据。
- 如果出现曲线不连续的情况,则断开后的曲线部分无法进行计算。
- 由于曲线计算误差积累的影响, 桩点坐标误差的大小可能会达到数毫米。

25.8.1 条件设置

条件设置功能用于在输入线路元素时的曲线起点和缓和曲线线形的设定。

曲线起点设定是指将上一曲线的交点或终点自动作为新曲线起点的设置:缓和曲线线形 设定是指缓和曲线采用回旋曲线或抛物曲线的设定。此设置应在输入线路元素前进行。


条件设定步骤

- 在测量模式第 2 页菜单下按[菜单]键后选 取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"整体计算法"进入<整体计算法>界 面。
- 3. 选取"条件设定"进入<条件设定>界面。
- 4. 按[▶]键或[◀]键选取所需选项,按[OK] 键完成设置返回<整体计算法>界面。
 - 下曲线起点: 设置下一曲线的起点。 "交点": 将上一曲线的交点作为下一曲 线的起点。
 - "终点": 将上一曲线的终点(缓直点或 圆曲线终点)作为下一曲线的起点。
 - 曲线: 设置缓和曲线的类型。
 - "回旋曲线": 缓和曲线采用回旋曲线。
 - "抛物曲线": 缓和曲线采用抛物曲线。
 - 曲线参数输入后不允许再更改缓和曲线 类型。

Note

•出厂默认设置为"交点"和"回旋曲线"。

整体计算法 輸入线路元素 位自动计算

条件设定/基点

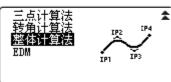
下曲线起点:变点 曲线:

回旋曲线

25.8.2 输入线路元素

输入线路元素功能用于线路元素的输入、检查与修改,包括以下内容:

- 线路交点坐标输入
- 线路曲线参数输入
- 线路元素检查
- 线路元素清除


25.8.2.1 输入线路交点

输入线路交点功能用于顺序输入线路起点及各交点的坐标数据。

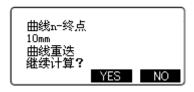
线路交点输入步骤

- 在测量模式第2页菜单下按[菜单]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"整体计算法"进入<整体计算法>菜单界面。
- 3. 选取"输入线路元素"进入<输入线路元素>界面。
- 4. 选取"输入线路交点"进入<输入线路交点。 点>界面。
- 新入曲线 1 的起点 BP (基准点) 的坐标后 按[往下]键。
 - 按[调取]键可调用内存中的坐标数据。
 - 按[记录]键可将输入的坐标数据存储至 仪器内存当前作业中。

- 6. 输入曲线 1 的交点 IP1 的坐标后按[**往下**] 键。
- 7. 按步骤 6 同样方法顺序输入线路的全部交点 IPi 的坐标。在输入线路终点坐标后按 [终点]键。
- 8. 检查线路终点坐标,按[**OK**]键确认结束交 点输入返回<输入线路元素>界面。

25.8.2.2 输入曲线参数

曲线参数输入功能用于顺序输入线路各曲线的参数数据。


- 曲线起点和缓和曲线线形设置
 通过设置可以将上一曲线的交点或终点(缓直点)自动设定为下一曲线的起点、缓和曲 线采用何种线形进行设定。
 - **『** "25.8.1 条件设置"
- 输入曲线参数后,当按[OK]键进行曲线计算出现曲线重叠时,屏幕会给如下提示:

• 如果输入曲线参数的开始点位于起点之前,则二者的距离差值以负数形式给出提示:

• 如果输入曲线参数的结束点位于终点之后,则二者的距离差值以正数形式给出提示:

此时,可按[YES]键忽略继续计算,或按[NO]键终止计算返回<曲线参数输入>界面进行数据修改。

曲线参数输入步骤

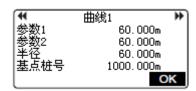
- 1. 输入线路交点。
 - **『** "25.8.2.1 输入线路交点"
- 2. 选取"输入线路参数"进入<输入线路元素>界面。
- 3. 输入曲线 1 的第一、二回旋 "参数 1"和 "参数 2"、圆曲线 "半径"、"基点桩号" (即起点桩号)等曲线参数值后按[OK]键。
 - 按[交点]键可显示根据曲线 1 的起点、 交点 1 和交点 2 的坐标计算出的曲线转 角、方向、起点至交点 1 和交点 1 至交 点 2 的距离值,检查后按[OK]键确认。
- 4. 输入曲线 2 的第一、二回旋 "参数 1"和 "参数 2"、圆曲线"半径"等曲线参数值 后按[OK]键。
 - 在"25.8.1 条件设置"中,若将"下曲线起点"设为"交点"时则不显示"基点桩号"。

- •按[**交点**]键可显示根据曲线 2 的交点 1、 交点 2 和交点 3 的坐标计算出的曲线转 角、方向、交点 1 至交点 2 和交点 2 至 交点 3 的距离值,检查后按[**OK**]键确认。
- 5. 按步骤 4 同样方法继续后面各曲线参数的 输入。
- 6. 按[OK]键结束曲线参数的输入返回<输入 线路元素>菜单界面。

25.8.2.3 显示线路元素

线路元素显示功能用于显示在"25.8.2.1输入线路交点"和"25.8.2.2输入曲线参数"中输入的线路交点和曲线参数数据内容,以便进行数据正确性的检查,若需修改可按前述的曲线参数输入方法进行。

• 线路元素显示按曲线编号顺序进行。


路线元素显示步骤

- 1. 输入线路交点。
 - **『** "25.8.2.1 输入线路交点"
- 2. 输入曲线参数。
 - **『** "25.8.2.2 输入曲线参数"
- 3. 选取"显示线路元素"进入<显示线路元素>界面。
 - •按[▶]键或[◀]键显示各曲线的起点 BP、 交点 IP、终点 EP 的坐标及其相应曲线 参数、曲线数据等信息:

起点坐标=>交点1坐标=>交点2坐标=> 曲线参数=>下一曲线起点坐标.....。

:

4. 按[**OK**]键结束曲线参数显示返回<输入线 路元素>菜单界面。

25.8.2.4 清除线路元素

线路元素清除功能用于清除在"25.8.2.1输入线路交点"和"25.8.2.2输入曲线参数"中输入的线路交点和曲线参数数据内容。

线路元素清除步骤

- 在测量模式第2页菜单下按[菜单]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"整体计算法"进入<整体计算法>菜单界面。
- 3. 选取"输入线路元素"进入<输入线路元素>菜单界面。
- 4. 选取"清除线路元素"。
- 5. 按[YES]键确认清除线路全部数据。
 - •按[NO]键取消清除返回<输入线路元素> 菜单界面。

25.8.3 桩位自动计算

桩位自动计算功能用于根据"25.8.2输入线路元素"输入的线路元素数据进行线路主桩点坐标的自动计算,同时可按给定的桩号间距和边桩偏距进行中桩点和边桩点坐标的自动计算。

- •自动计算的主桩点、中桩点和边桩点点数可多达 600 点,计算结果自动存入仪器内存当前作业中。
- 所计算线路的主桩点取决于线路的类型:

线路类型

主桩点

双缓和曲线线路

第一缓和曲线起点 ZH-1、终点 HY-1,第二缓和曲线起

(基本形曲线)

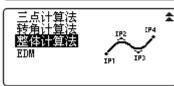
点 YH-2、终点 HZ-2。

无圆曲线过渡线路

点 ZH-1、点 HY-1 和点 HZ-2。

(凸形曲线)

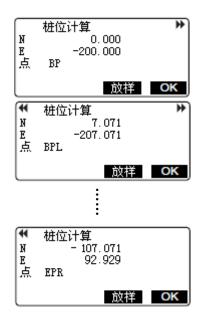
圆曲线线路

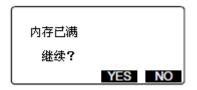

圆曲线的起点 BC、中点 SP 和终点 EC。

- 计算边桩时两边的输入宽度值可以不同并分别计算。
- 计算所得桩点的桩号可以在预先设定桩点名的基础上自动产生。
- 计算所得桩点坐标自动存储于当前作业中。存储时若出现同桩号情况的处理方式(是否 覆盖原数据)可以预先设定。

桩位自动计算步骤

- 1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"整体计算法"进入<整体计算法>菜单界面。
- 3. 选取"桩位自动计算"进入桩位自动计算 界面。


4. 输入桩号间距、中间距、边桩偏距、同点 号处理方式和点名前缀等数据。


桩号间距:在基点桩号百位整数基础 上每隔一个"桩号间距"计算一个桩 点。

中间距:在按桩号间距计算的每个桩 点桩号基础上增加一"中间距"后计 算一个桩点。

- 5. 按[OK]键确认。仪器计算出线路的主桩点、中桩点和边桩点的坐标,计算结果显示在屏幕上并自动存入仪器内存当前作业中。
 - 按[▶]或[▲]键可查阅有关起点、终点、 主桩点、中桩点和边桩点坐标计算结果 页面。
 - •若"同点号处理"设置为"跳过",则在保存计算结果时,如果当前作业中存在相同点号,则这些点将被注上"*"号并不会被自动存储,若要保存需重新命名点号。
 - 按**[放样]**键直接进行所计算桩点的放样 测量。
 - **『** "15. 放样测量"
- 6. 当计算的桩点数大于 600 点时会给出如右 屏幕提示。
 - ·按[YES]键继续并采用前 600 点的数据。
 - ·按[NO]键返回步骤 4 界面。
- 7. 按[**OK**]键结束桩位自动计算返回<整体计算法>菜单界面。

Note

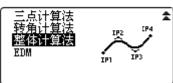
- "*"号表示为默认值
- •"桩号间距"表示在基点桩号百位整数基础上每隔多远距离计算一个中桩点位,输入 范围: 0.000~9999.999m (10.000*)。
- "中间距"表示在按"桩号间距"计算所得每个桩点基础上增加一个"中间距"计算一个中桩点位,输入范围: 0,000~9999,999m (0*)。
- •"边桩偏距"表示边桩至相应中桩的距离值(宽度),可同时计算两侧或同侧的边桩, 左边输"-"值,右边桩输"+"值;输入范围: -999.999~999.999m(Null*)。
- 同点号处理选择项:"追加*"(以相同点号记入当前作业)或"跳过"(暂不记录)。
- 点名前缀输入最大长度: 8 字符 (pegNo.*)。
- 主桩点设置内容关机后也不会丢失,除非进行初始化显示"清除 RAM"时才会被清除。

Ⅲ 桩名自动产生规则:

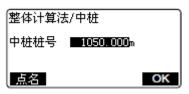
- 回旋曲线主桩点 在曲线主桩点符号后加曲线编号,例如:曲线 1 的直缓点 1 为 "KA1-1",曲线 2 的 直缓点 1 为 "KA2-1"。
- •圆曲线主桩点 在曲线主桩点符号后加曲线编号,例如:曲线1的起点为"BC1",曲线2的起点为 "BC2"。
- 边桩

在中桩点点号后加 "L"或者 "R"分别表示相应的左边桩或右边桩。在输入"边桩偏距"时,以左负右正的方式输入宽度值,若输入两个负值,则左边桩号为 "L"和 "L2",若输入两个正值,则右边桩号为 "R"和 "R2"。

- 点号前或末尾的空格将被忽略。
- 点名最大长度为 16 个字符,输入大于 16 个字符时则点名最前面的字符将被删除。


25.8.4 任意桩位计算

任意桩位计算功能通过输入线路上任意中桩桩号和边桩偏距求得中桩点及其相应边桩点的坐标。

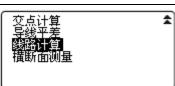

任意桩位计算步骤

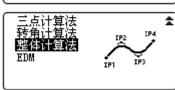
- 1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"整体计算法"进入<整体计算法>菜单界面。
- 3. 选取"任意桩位计算"进入任意桩位计算 界面。
- 4. 输入待计算中桩点的"中桩桩号"。
 - 按[点名]键可通过输入点名来计算中桩 坐标,输入时将桩号以"××+××.× ××"方式输入。
- 5. 按[**OK**]键,仪器计算并显示所计算中桩点 坐标及其桩号。
 - 按[**边桩**]键后以左负右正方式输入边桩 偏距值后按[**OK**]键便可计算边桩点的坐 标。
 - 按[记录]键可将计算结果存储至仪器内 存当前作业中。
 - ☞ "30.1 已知坐标输入与删除"

- •按[**放样**]键可直接进行所计算点的放样 测量。
 - **『** "15.放样测量"
- 按[**中桩**]键可继续下一中桩点坐标的计 算。
- 6. 按**{ESC}**键结束任意桩点计算返回<整体 计算法>菜单界面。

Ⅲ 点名自动产生规则

- 桩位点名:在点名前缀末尾加上至该点的桩号(××+××.×××)作为所计算桩位的点名。
- 点名输入大于 16 个字符时,则点名前面的字符将被删除。


25.8.5 中桩反算


中桩反算功能用于根据线路上任意边桩点的坐标反算出相应中桩点的坐标及其边桩偏距值。

• 边桩点的坐标可通过调取、输入或实地测定的方式获得。

输入边桩点坐标反算中桩步骤

- 在测量模式第2页菜单下按[菜单]键后选取"线路计算"进入<线路计算>菜单界面。
- 2. 选取"整体计算法"进入<整体计算法>菜单界面。
- 3. 选取"反算中桩"进入中桩反算界面。

- 4. 输入待计算边桩点的坐标。
 - 按[调取]键可调取内存中的坐标数据。
 - 按[观测]键直接测定边桩点的坐标。
- 5. 按[**OK**]键,仪器计算并显示相应中桩点坐 标值和点名。
- 6. 按[**OK**]键显示相应边桩点坐标值、偏距值 和点号。
- 7. 按[**OK**]键后重复步骤 4 至 6 继续下一中桩的反算。
 - 按[记录]键可将计算结果存储至仪器内存当前作业中。
 - ☞ "30.1 己知坐标输入与删除"
 - 按**[放样]**键可直接进行所计算点的放样 测量。

广 "15.放样测量"

测定边桩点坐标反算中桩步骤

- 1. 按上面介绍的步骤 1 至 3 进入<中桩反算> 界面。
- 2. 照准边桩点上的棱镜,按**[观测]**键开始边桩点的测量,屏幕显示边桩点的坐标、距离、垂直角和水平角测量值。

按[停止]键停止测量。

3. 屏幕显示测量所得边桩点的坐标值。

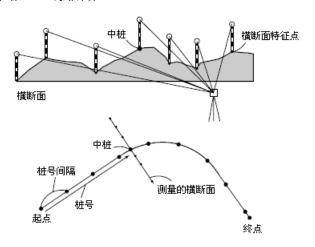
4. 按[**YES**]键确认, 仪器计算并显示相应中桩 点坐标值和中桩桩号。

5. 按[**OK**]键显示边桩点坐标值、边桩偏距值 和点号。

6. 按[**OK**]键后重复步骤 2 至 6 继续下一边桩 测定和中桩反算。 整体计算法/反算中桩 Np: -5.707 Ep: 10.457 确认?

整体计算法/中桩 N -8.082 E 8.082 中桩桩号 1264.061m No.12+64.061 记录 放样 OK

整体计算法/边桩 Np: -5,707 Ep: 10,457 边桩偏距 -3,359m No.12+64.061L 记录 放样 OK


Note

- 中桩点名和边桩点名的产生规则与主桩点自动计算中的规则相同。
 - **"25.8.3** 桩位自动计算"
- 中桩点名的产生规则与任意桩位计算中的规则相同。
 - **"25.8.4** 任意桩位计算"

26. 横断面测量

横断面测量功能用于已定义道路及其他线状地物的横断面测量,作业时可以通过选取观测方向来提高横断面测量的工作效率。

相关术语: "25.线路计算"

- 测距参数的设置可以在横断面测量菜单下进行。
 - ℃ 设置项:"33.2 测距参数设置"

横断面测量步骤

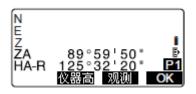
- 1. 在测量模式第 2 页菜单下按[**菜单**]键后选取"横断面测量"。
- 2. 在<横断面测量>界面下选取"测站定向", 输入测站数据并完成测站设立。
 - "13.1 输入测站和后视方位角数据"
- 3. 在<横断面测量>界面下选取"横断面测量"

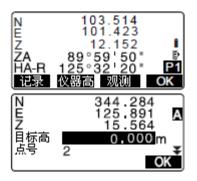
26.横断面测量

- 4. 输入横断面测量的线路名称、桩号间隔、桩号增量、桩号(所测量横断面的中桩号) 和选取横断面测量的观测方向后按[**OK**] 键。
 - [桩号十]或[桩号一]键用于使桩号值在 现值基础上增加或减少一个"桩号增量" 值。
 - 桩号以"×××××××"格式输入, 经处理后以"××+×××"格式显示,其中"+"前、后的数字是由输入 的"桩号"除以"桩号间隔"所得的整 段数和不足整段的尾数。
 - 如果所测量横断面的桩号与已测量的桩号相同,则被认为该横断面已观测完毕, 屏幕显示确认界面如右图。此时按[YES] 键可转至步骤 5 对该横断面进行测量, 按[NO]键则可对桩号间隔、桩号增量、桩号和横断面观测方向重新进行设置。
- 5. 照准设于横断面特征点上的棱镜按**[观测]** 键测量并显示测量结果。

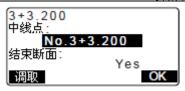
☞ "圓 观测方向"

- [仪器高]键用于设置仪器高和目标高。
- •[偏心]键用于横断面特征点的偏心测量。
- 当最先观测的点为中桩点时需对其进行 设置。


☞ 步骤8


6. 按[记录]键,输入点名、目标高和代码后 按[OK]键保存所测断面点的测量数据。

7. 按所设置的观测方向,重复步骤 5 至 6 同 样方法顺序观测横断面上的全部特征点直 至中桩点。

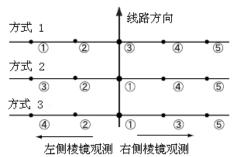


- 8. 对横断面中桩点观测后按[OK]键进入右图 所示界面,在"中线点"框内输入该横断 面中桩点的点名并将"结束断面"设为 "Yes"后按[OK]键结束该横断面的测量。
 - 若不是按[OK]键而是按{ESC}键来结束, 屏幕出现右图所示界面以确认是否放弃 该横断面测量结果,若放弃按[YES]键, 否则按[NO]键继续该横断面的测量。
- 9. 继续下一个道路横断面的测量。

Note 横断面设置值范围

- 道路名称最大长度: 16 字符
- 桩号增量: -999999.999~999999.999 m
- 桩号: -99999.999~99999.999 m
- 桩号间隔: 0.000~999999.999 m
- 方向: 自左向右/自右向左/向左/向右

🔟 观测方向


对道路横断面特征点的观测顺序有多种方式可供选用(如图所示)。

当观测"方向"选择为"向左"或者"自左向右"时有下列方式:

方式 1: 自左向右顺序观测横断面各特征点。

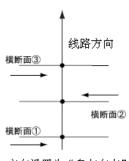
方式 2: 首先观测中桩点,接着观测紧靠中桩点左侧的特征点,然后以任意顺序观测剩余的特征点。

方式 3: 采用 2 个棱镜测量作业时,首先观测中桩点,接着观测紧靠中桩点左侧的特征点,然后以效率高的任意顺序观测剩余的特征点。例如 使用棱镜 1 和棱镜 2 轮流观测中桩左、右侧各特征点。

当观测"方向"选择为"向右"或者"自右向左"时有下列方式:

方式 1: 按自右向左方式顺序观测横断面各特征点。

方式 2: 首先观测中桩点,接着观测紧靠中桩点右侧的特征点,然后以任意顺序观测剩余的特征点。

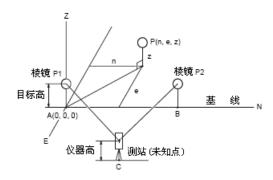

方式 3: 采用 2 个棱镜测量作业时,首先观测中桩点,接着观测紧靠中桩点右侧的特征点,然后以效率高的任意顺序观测剩余的特征点。例如使用棱镜 1 和棱镜 2 轮流观测中桩右、左侧各特征点。

当观测方向选择为"自左向右"或者"自右向左"时,在完成一个横断面测量后,CX自动切换从道路另一侧开始下一横断面的测量。采用这种方式可以在对多个横断面测量时减少司镜人员的移动距离,提高测量作业效率。

横断面测量数据查阅

查阅作业中保存的道路横断面测量数据时,显示结果如右图所示。其中"偏距"为横断面上特征点至道路中线的距离值。

沙 数据查阅: "28.8 数据查阅"



方向设置为"自左向右"

27. 点到线测量

点到线测量功能用于求取目标点 P 在由基线 A (0,0,0)-B 为 N 轴方向确定的坐标系中的坐标值,测站 C 的设立及定向和坐标系的建立通过对点 A 和点 B 的观测自动完成。

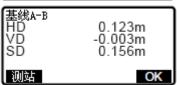
定义基线步骤

- 在测量模式第 2 页菜单下按[菜单]键后选取"点到线测量"进入<点到线测量>菜单界面。
- 2. 选取"定义基线"。
- 3. 输入仪器高后按[OK]键。
- 4. 照准基线起点 A 后按[观测]键测量。

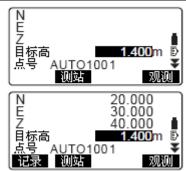
27.点到线测量

检查测量结果后按[OK]键确认。

照准基线终点 B 后按[观测]键测量。


检查测量结果后按[OK]键确认。

- 6. 按[**OK**]键确认测量结果,完成基线 AB 的 定义和测站设立与定向,继续点到线的测 量。
 - [**测站**]键用于显示完成定义基线后计算 所得的测站点坐标。
 - •[OK]键用于确认测量结果并继续点到线 的测量。
 - [记录] 键用于将测站点坐标保存至当前 作业。此时不能对测站坐标和仪器高进 行修改。

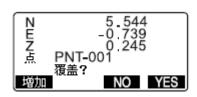

N0:	20.000
E0:	30.000
Z0:	40.000
仪器高	1.500m
记录	OK

点到线测量步骤

- 在测量模式第 2 页菜单下按[菜单]键后选取"点到线测量"进入<点到线测量>菜单界面。
- 2. 选取"点到线测量"。

- 3. 照准目标点后按[**观测**]键测量并显示测量 结果。
 - [记录]键用于将目标点坐标保存至当前 作业。
 - •[测站]键用于显示测站点的坐标。
- 4. 按步骤 3 同样方法测量其他目标点。
- 5. 按{ESC}键返回<点到线测量>菜单界面。

28. 记录数据


在记录数据菜单下可以将测量数据(距离、角度、坐标观测值)、测站数据、后视数据和注记数据等保存到当前作业中。

『 "29.作业选取与删除"

• 仪器内存可记录多达 10000 点的数据。

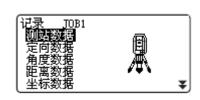
Note

• 记录数据出现相同点名时, 仪器显示如下界面:

按[YES]键用新点数据覆盖原有点数据。

按[NO]键以另一点名记录新点数据。

按[增加]键用相同的点名记录新点数据,同时保留原有点数据。


28.1 记录测站数据

记录测站数据功能用于将设立测站时输入的测站数据保存至当前作业中。

- 记录的测站数据内容包括测站坐标、点名、仪器高、代码、测量员、观测日期、观测时间、天气情况、风力、温度、气压和气象改正数等。
- 如果不记录测站数据,则仪器将使用当前作业中最后记录的测站数据。

测站数据记录步骤

- 1. 在测量模式第3页菜单下按[记录]键进入< 记录>菜单界面。
 - 当前作业名显示在菜单界面上。
- 2. 选取"测站数据"。

- 3. 输入下列测站数据各值:
 - 1)测站坐标
 - 2) 点名
 - 3) 仪器高
 - 4) 代码
 - 5) 测量员
 - 6) 日期
 - 7)时间
 - 8) 天气
 - 9) 风力
 - 10)温度
 - 11)气压
 - 12)气象改正数
 - •按[调取]键可调用内存中的坐标数据。 **13.1** 输入测站和后视方位角数据"
 - 输入代码时,屏幕显示出[增加]、[列表] 和[查找]功能:

[增加]键用于将输入的代码存入内存。 [列表]键用于将内存中的代码按存入日 期反序显示。

[查找]键用于查找内存中特定的代码。 "30.3 代码输入与删除"

"30.4 代码查阅"

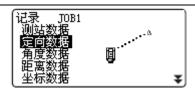
- •按[Oppm]键可将气象改正数设置为"0", 温度和气压值恢复为默认值。
- 4. 核对输入的数据后按[OK]键保存。
- 按{ESC}键返回<记录>操作界面。

Note

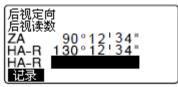
- 点名输入最大长度: 14 字符
- 仪器高输入范围: -9999.999~9999.999m
- 代码和测量员输入最大长度: 16 字符
- 天气设置选项: 晴、阴、小雨、大雨、雪
- 风力设置选项: 无风、微风、小风、大风、强风

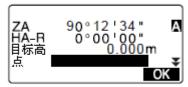
0ppm

28.记录数据

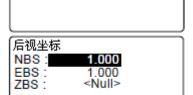

- 温度输入范围: -30~60℃, 每挡 1℃
- 气压输入范围: 500~1400hPa, 每挡 1 hPa (375~1050mmHg, 每挡 1mmHg)
- 气象改正数输入范围: -499~499ppm

28.2 记录定向数据

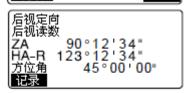

记录定向数据功能用于将后视定向数据保存至当前作业中。后视方位角的设置可以选取"角度定向"或"坐标定向"的方法来进行。


角度定向数据记录步骤

- 1. 在测量模式第3页菜单下按[记录]键进入< 记录>菜单界面。
- 2. 选取"定向数据"。
- 3. 选取"角度定向"。 屏幕上实时显示此时的角度测量值。
- 4. 输入后视方位角值。
- 5. 照准后视点,按[记录]键后输入下列各值:
 - 1) 目标高
 - 2) 点名
 - 3) 代码
- 6. 核对输入的数据,按[**OK**]键完成后视定向 和数据记录后返回<记录>菜单界面。



坐标定向数据记录步骤


- 1. 在测量模式第3页菜单下按[记录]键进入<记录>菜单界面。
- 2. 选取"定向数据"。
- 3. 选取"坐标定向"。
- 4. 输入后视点的坐标值。
 - •按[**调取**]键可调用内存中的坐标数据。 **"**13.1 输入测站和后视方位角数据"
- 5. 按[**OK**]键,屏幕上实时显示此时的角度测量值和根据坐标反算的后视方位角值。
- 6. 照准后视点,按[记录]键后输入下列各值:
 - 1) 目标高
 - 2) 点名
 - 3) 代码

记录 JOB1 测站数据 **定向数据** 角度数据 **個** 距离数据 坐标数据 **举**

定向记录 角度定向 **四流运向**

调取

OK

7. 核对输入的数据,按[**OK**]键完成后视定向 和数据记录后返回<记录>菜单界面。

28.3 记录角度数据

记录角度数据功能用于将测量获得的角度数据保存到当前作业中。

角度数据记录步骤

- 1. 在测量模式第3页菜单下按[记录]键进入<记录>菜单界面。
- 2. 选取"角度数据"进入<角度记录〉界面, 照准目标点。

角度测量值实时地显示在屏幕上。

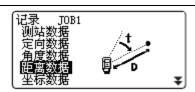
- 3. 输入以下各值:
 - 1) 目标高
 - 2) 点名
 - 3) 代码

- 4. 核对输入的数据,按[**记录**]键完成角度数据记录返回<角度记录>界面。
- 5. 照准下一目标点重复步骤 3 至 4 继续角度 测量和记录。
- 6. 按**{ESC**}键结束角度数据记录返回<记录> 菜单界面。

记录结束

28.4 记录距离数据

记录距离数据功能用于将测量获得的距离和角度数据保存到当前作业中。


•按[测存]键可十分方便地自动完成距离测量和数据记录。

距离数据记录步骤

- 1. 在测量模式第3页菜单下按[记录]键进入<记录>菜单界面。
- 2. 选取"距离数据"进入<距离记录>界面。
- 3. 照准目标点并按**[观测]**键测量,测量结果 显示在屏幕上。
 - 按[测存]键可自动完成距离测量和数据 记录,在不需要改变自动产生的测量点 点号、代码和目标高时尤其方便。
 - •按[偏心]键可进行偏心测量。
- 4. 输入以下各值:
 - 1) 目标高
 - 2) 点名
 - 3) 代码
- 5. 核对输入的数据,按[**记录**]键完成距离数据记录返回<距离记录>界面。
- 6. 重复步骤 3 至 5 继续下一目标点的距离测量和记录。
- 7. 按**{ESC}**键结束距离数据记录返回<记录> 菜单界面。

Note

•为防止重复记录,一旦数据记录完成[记录]功能的显示将消失。

28.5 记录坐标数据

记录坐标数据功能用于将测量获得的坐标数据保存到当前作业中。

坐标数据记录步骤

- 1. 在测量模式第3页菜单下按[记录]键进入<记录>菜单界面。
- 2. 完成测站的设立和定向, 选取"坐标数据" 进入<坐标记录>界面。
- 3. 照准目标点并按**[观测]**键测量,测量结果 显示在屏幕上。
 - 按[测存]键可自动完成坐标测量和数据 记录,在不需要改变自动产生的测量点 点号、代码和目标高时尤其方便。
 - •按[偏心]键可进行偏心测量。
- 4. 输入以下各值:
 - 1) 目标高
 - 2) 点名
 - 3) 代码
- 5. 核对输入的数据,按[**记录**]键完成坐标数据记录返回<坐标记录>界面。
- 6. 重复步骤 3 至 5 继续下一目标点坐标测量 和记录。
- 7. 按**{ESC}**键结束坐标数据记录返回<记录> 菜单界面。

28.6 记录距离和坐标数据

记录距离坐标数据功能用于将测量获得的距离和坐标数据同时保存到当前作业中。

- 距离数据和坐标数据以相同点号保存。
- 距离数据和坐标数据保存为不同记录, 距离数据记录在前, 坐标数据记录在后。

距离坐标数据记录步骤

- 1. 在测量模式第3页菜单下按[记录]键进入<记录>菜单界面。
- 2. 完成测站的设立和定向, 选取"距离坐标" 进入<距离坐标>记录界面。
- 3. 照准目标点并按**[观测]**键测量,测量结果 显示在屏幕上。
 - 按[测存]键可自动完成距离、坐标测量和数据记录,在不需要改变自动产生的测量点点号、代码和目标高时尤其方便。
 - •按[偏心]键可进行偏心测量。
- 4. 输入以下各值:
 - 1) 目标高
 - 2) 点名
 - 3) 代码
- 5. 核对输入的数据,按[记录]键完成距离、 坐标数据记录返回<距离坐标>记录界面。
- 6. 重复步骤 3 至 5 继续下一目标点距离坐标 的测量和记录。
- 7. 按**{ESC}**键结束距离坐标数据记录返回<记录>菜单界面。

28.7 记录注记数据

记录注记数据功能用于将测量作业时输入的注记数据保存到当前作业中。

注记数据记录步骤

- 1. 在测量模式第3页菜单下按[记录]键进入<记录>菜单界面。
- 2. 选取"注记"进入<注记记录>界面。
- 3. 输入注记内容,按[**OK**]键完成注记数据记录返回<注记记录>界面。

Note

• 注记内容最大长度: 60 字符。

28.8 数据查阅

数据查阅功能用于查阅保存在当前作业中的数据。

- 根据点名可以在当前作业中查找和显示点的数据,但不能查找注记数据。
- 经由计算机等外部设备通讯输入的已知坐标数据无法在此查阅。

数据查阅步骤

- 1. 在测量模式第3页菜单下按[记录]键进入<记录>菜单界面。
- 2. 选取"数据查阅"进入数据表显示界面。

3. 选取要查阅点的点名后按{**ENT**}键显示数据内容。

右图所示为一距离记录数据。

- 按[↑↓..P]键后按{▲}或{▼}键显示上一 点或下一点。
- 按[↑ ↓ ...P]键后按{▲}或{▼}键显示上一页或下一页。
- •按[首点]键显示首页的首点。
- •按[末点]键显示末页的末点。
- 按[查找]键进入点查找界面,通过输入 待查找点的点号来查找所需点,当内存 中点数较多时搜寻时间会较长。
- •按[往上]键显示上一项或点的数据。
- •按[往下]键显示下一项或点的数据。
- •按[编辑]键对所选点的点号、目标高、代码等数据进行编辑。

28.记录数据

- ·按[OK]键确认修改返回上一显示界面。
- •按[归算]键显示如右图所示归算数据。
- •按[观测]键返回上一观测值显示界面。

4. 按**{ESC}**键退出点数据显示返回数据表显示界面。

再次按{**ESC**}键结束数据查阅返回<记录>菜单界面。

Note

• 查找数据时,如果作业中存在多个同号点,CX 将查找出最新记录点的数据。

28.9 数据删除

数据删除功能用于删除保存在当前作业中的数据。

数据删除步骤

- 1. 在测量模式第3页菜单下按[记录]键进入<记录>菜单界面。
- 2. 选取"数据删除"进入数据表显示界面。
- 3. 选取待删除点的点号后按 **(ENT)** 键显示数据内容。
 - 按[↑↓..P]键后按{▲}或{▼}键显示上一 点或下一点。
 - 按[↑ ↓ ...P]键后按{▲}或{▼}键显示上一页或下一页。
 - •按[首点]键显示首页的首点。
 - 按[末点]键显示末页的末点。
 - 按[查找]键进入点查找界面,通过输入 待查找点的点号来查找所需点,当内存 中点数较多时搜寻时间会较长。
 - •按[往上]键显示上一项或点的数据。
 - 按[往下]键显示下一项或点的数据。
- 4. 按[删除]键删除所选点数据。
- 5. 按**{ESC}**键结束数据删除返回<记录>菜单 界面。

- 删除数据前务必仔细确认,以免丢失重要数据。
- •测站坐标等重要数据的删除,可能会造成需要该数据的软件无法正确处理下载后的数据。

29. 作业选取与删除

29.1 作业选取

作业选取功能用于当前作业和坐标作业的选取。

- CX 共有 10 个作业可供选用, 仪器出厂时默认的当前作业为 JOB1。
- 10 个作业的名称默认为 JOB1~JOB10, 作业名称可更改。
- 每个作业均可设置比例因子,但只能对当前作业的比例因子进行修改。

🔟 当前作业

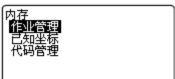
当前作业用于保存测量结果、测站数据、已知点数据、注记数据和坐标数据等。 **"301**已知坐标输入与删除"

🔟 坐标作业

坐标作业用于提供坐标测量、后方交会和放样测量等所需的坐标数据。

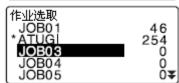
🔟 比例尺改正

CX 根据所测斜距进行平距和坐标计算,如果设置了比例因子,计算中将进行比例尺 改正:


比例尺改正后平距(s)= 实测平距(S)×比例因子


•比例因子设为"1.00000000"时,对平距不进行比例尺改正。

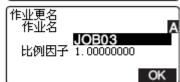
作业选取步骤


- 1. 在内存模式下选取"作业管理"进入<作业管理>菜单界面。
- 选取"作业选取"进入<作业选取>界面, 光标定位于"当前作业"项上。

3. 按[列表]键列出作业名表。

- •作业也可以通过按{▶}键或{◄}键来选取。
- 作业名右侧的数字表示该作业中存储的 记录数。
- •作业名边上的"*"号表示该作业尚未输 出到计算机等外部设备。
- 4. 将光标移至所需作业名上后按**[ENT]**键将 该作业选取为当前作业。
- 5. 按**[ENT]**键光标定位于"坐标作业"项上, 按**[列表**]键列出作业名表。
- 6. 将光标移至所需作业名上,按**[ENT]**键将该 作业选取为坐标作业。

Note


• 作业名表共由两页组成。

作业更名步骤

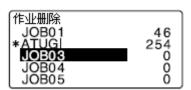
- 1. 在内存模式下选取"作业管理"进入<作业管理>菜单界面。
- 2. 按前述方法将待更名作业选取为当前作 业。
 - ☞ "作业选取步骤"
- 3. 选取"作业更名"进入<作业更名>操作界面,在"作业名"处输入新作业名,按[OK] 键确认并操作返回<作业管理>菜单界面。
 - 此时可对比例因子进行设置。

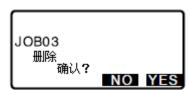
Note

- 作业名最大长度: 12 字符。
- •比例因子设置范围: 0.50000000~2.00000000 (出厂默认值为 1.00000000)。

29.2 作业删除

作业删除功能用于清除作业中保存的数据,数据清除后的作业将恢复出厂时的作业名称。 Note

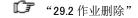

• 注有"*"号的为未向计算机等外部设备通讯输出的作业不允许删除。


作业删除步骤

- 1. 在内存模式下选取"作业管理"进入<作业管理>菜单界面。
- 2. 选取"作业删除"进入<作业删除>界面。
 - 作业名右侧的数字表示该作业中存储的记录数。
 - •作业名边上的"*"号表示该作业尚未通 讯输出到计算机等外部设备上,不允许 对其进行删除。
- 3. 将光标移至待删除作业名上后按**{ENT}** 键。
- 4. 按[**YES**]键确认清除所选作业中的数据后 返回<作业删除>界面。

30. 已知数据输入与删除

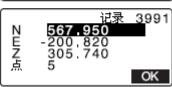
30.1 已知坐标输入与删除


坐标输入与删除功能用于输入和删除当前作业的已知坐标数据。

预先输入仪器的已知坐标数据在测量作业时可以作为测站点、后视点、已知点或放样点坐 标调用。

- CX 内存可输入的坐标数据记录数和其他数据记录数总和可达 10000 个。
- 坐标数据输入的方法有键盘输入和计算机通讯输入两种。
- 通讯电缆: "36.2 选购附件" 有关数据输出格式和通讯指令操作见《通讯操作手册》。
- 在计算机通讯输入坐标数据时, 仪器不进行相同点号的检查。
- 通讯输入已知坐标数据时,在<已知坐标>界面下选取"通讯设置"可对通讯参数进行设置。

- 当距离单位设置为"英寸"时,输入的已知坐标数据仍必须以"英尺"单位输入。
- 删除数据并不释放其所占用空间,删除作业后方可释放所占用空间。



已知坐标键盘输入步骤

- 1. 在内存模式下选取"已知坐标"进入<已 知坐标>菜单界面。
 - 当前作业名显示在屏幕上。
- 2. 选取"键盘输入"。
- 3. 输入已知点坐标值及其点名按**{ENT}**键将数据保存到当前作业中。
- 4. 重复上述步骤继续输入其他已知点坐标数 据。

30.已知数据输入与删除

5. 完成全部已知坐标数据输入后按{ESC}键返回<已知坐标>界面。

已知坐标通讯输入步骤

- 1. 用通讯电缆连接 CX 和计算机。
- 2. 在内存模式下选取"已知坐标"进入<已 知坐标>菜单界面。
 - 当前作业名显示在屏幕上。
- 3. 选取"通讯输入"进入<通讯输入>界面。
- 4. 根据所需选取输入数据类型后按{ENT}键 使 CX 处于等待接收数据状态。

Note

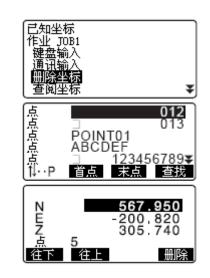
- •供选取的输入数据类型有"S类型"(索 佳格式)和"T类型"(拓普康格式)。
- ▶ 通讯设置:"33.1 仪器参数设置"
- 5. 启动计算机的通讯软件向 CX 发送 SDR 格式坐标数据。

接收到的数据记录数显示在屏幕上,数据 接收完成后返回<已知坐标>菜单界面。

·按{ESC}键可中断数据的通讯。

Note

- 可选输入数据类型:
 - S 类型: 索佳 SDR33 格式
 - T类型: 拓普康 GTS(坐标)/SSS(坐标)格式



通讯输入 格式 SDR33 接收 12

删除已知坐标步骤

- 1. 在内存模式下选取"已知坐标"进入<已 知坐标>菜单界面。
 - 当前作业名显示在屏幕上。
- 2. 选取"删除坐标"。 已知坐标点名表显示在屏幕上。
- 3. 选取待删除点的点名后按**{ENT}**键显示其数据。
 - 按[↑↓..P]键后按{▲}或{▼}键显示上一 点或下一点。

 - ·按[**首点**]键显示首页的首点。
 - •按[末点]键显示末页的末点。
 - •按[**查找**]键进入点查找界面,通过输入 待查找点的点名来查找所需点。
 - 坐标数据查找:"13.1 输入测站和后 视方位角数据"
 - 按[往上]键显示上一点。
 - 按[往下]键显示下一点。
- 4. 按[删除]键删除所选点坐标数据。
- 5. 按{ESC}键返回<已知坐标>菜单界面。

清除已知坐标步骤

- 1. 在内存模式下选取"已知坐标"进入<已 知坐标>菜单界面。
- 2. 选取"清除坐标"后按{ENT}键。

3. 按**[YES]**键确认清除全部已知坐标数据后返回<已知坐标>菜单界面。

30.2 已知坐标查阅

查阅已知坐标功能用于对保存在当前作业中的已知坐标数据进行查阅。

查阅已知坐标步骤

- 1. 在内存模式下选取"已知坐标"进入<已 知坐标>菜单界面。 当前作业名显示在屏幕上。
- 2. 选取"查阅坐标"。 已知坐标点名表显示在屏幕上。
- 3. 选取待查阅点的点名后按**{ENT}**键。 查阅点数据显示在屏幕上。
 - 按[**往上**]键显示上一点。
 - ·按[往下]键显示下一点。
- 4. 按{ESC}返回已知坐标点名表界面。 按{ESC}返回<已知坐标>菜单界面。

30.3 代码输入与删除

代码输入与删除功能用于代码数据的输入和管理。

代码可以预先输入并保存在仪器内存中,内存中的代码可以在测量作业时调用并与测站数据或测量数据一起存储。

代码键盘输入步骤

- 1. 在内存模式下选取"代码管理"进入<代码管理>菜单界面。
- 2. 选取"键盘输入"。
- 3. 输入代码后按{ENT}键将代码存入内存并 返回<代码操作>菜单界面。

Note

- 代码最大长度: 16 字符。
- 可预先输入代码最大个数: 60 个。

代码通讯输入步骤

Note

- ·代码通讯输入仅对"T类型"通讯格式兼容的代码有效。
- ·代码通讯输入前需在通讯设置中选取好"T类型"。
 - 通讯设置:"33.1 仪器参数设置"
- 1. 用通讯电缆连接 CX 与计算机。
- 2. 在内存模式下选取"代码管理"进入<代码管理>菜单界面。
- 3. 选取"通讯输入"后按{ENT}键使 CX 处于等待接收数据状态。
- 4. 启动计算机的通讯软件向 CX 发送代码数据。

接收到的代码记录数显示在屏幕上,代码接收完成后返回<代码管理>菜单界面。

·按{ESC}键可中断数据的通讯。

代码删除步骤

- 在内存模式下选取"代码管理"进入<代码管理>菜单界面。
- 2. 选取"代码删除"显示代码表。

- 3. 将光标移至待删除代码上后按**[删除]**键 将其删除。
- 4. 按{ESC}返回<代码管理>菜单界面。

Note

• 若在步骤 2 中选取"清除代码"后按[YES]键则清除全部代码。

30.4 代码查阅

代码查阅功能用于代码数据的查阅。

代码查阅步骤

- 在内存模式下选取"代码管理"进入<代码管理>菜单界面。
- 2. 选取"代码查阅"显示代码表。

3. 按{ESC}返回<代码管理>菜单界面。

31. 作业数据输出

作业数据输出功能用于将保存在仪器内存作业中的数据输出到计算机等外部设备。 **『36.2** 选购**附件**"

数据输出格式和通讯指令:"通讯操作手册"

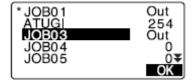
- 输出数据包括作业中的测量数据、测站数据、已知点数据、注记和坐标数据等。
- 通过计算机通讯输入的已知点数据不会被输出。
- 在<作业管理>菜单界面下洗取"通讯设置"可进行通讯参数的设置。

• 距离单位设置为"英寸"时,数据仍以"英尺"单位输出。

31.1 向计算机输出作业数据

向计算机输出作业数据步骤

- 1. 用通讯电缆连接 CX 和计算机。
- 2. 在内存模式下选取"作业管理"进入<作业管理>菜单界面。
- 3. 选取"通讯输出"进入数据类型选取界面。
- 4. 选取数据类型后按{ENT}键显示作业名 表。


Note

- •供选取的输出数据类型有"S类型"(索 佳格式)和"T类型"(拓普康格式)。 通讯设置:"33.1 仪器参数设置"
- 5. 选取待输出作业名后按{ENT}键。 所选作业名右侧显示"Out",可同时选取 多个作业输出。

- •注有"*"号的作业表示该作业未向计算 机等外部设备输出。
- 6. 按[OK]键确认。
- 7. 选取数据输出格式后按{ENT}键。
 - "S类型"(索佳)格式数据输出界面:

"T类型"(拓普康)格式数据输出界面:

当选取了"GTS(测量数据)"或"SSS(测量数据)"时,需对距离数据输出格式进行选取:

- "观测数据": 输出斜距
- •"归算数据":输出平距(若选取 SSS 格式还将输出高差)

- 若记录的数据中无测站数据,选取"归 算数据"时可能会输出意外的错误结果。
- 8. 在计算机端运行数据通讯软件并使之处于 等待接收数据状态后按{ENT}键开始输出 数据。

数据传送完毕后返回作业名表界面,此时 可继续下一作业数据的输出。

·中断数据输出按{ESC}键。

通讯输出 GTS(侧量数据) GTS(坐标数据) SSS(测量数据) SSS(坐标数据)

向计算机输出代码数据步骤

Note

- ·代码通讯输出仅对"T类型"通讯格式兼容的代码有效。
- 代码通讯输出前需在通讯设置中选取好"T类型"。
- € 通讯设置: "33.1 仪器参数设置"
- 1. 用通讯电缆连接 CX 与计算机。
- 2. 在内存模式下选取"代码管理"进入<代码管理>菜单界面。

- 3. 启动计算机的通讯软件使之处于等待接收 数据状态。
- 4. 选取"通讯输出"后按{ENT}键使 CX 向计算机发送代码数据。

代码发送完成后返回<代码管理>菜单界面。

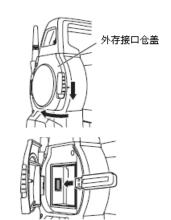
· 按{ESC}键可中断数据的通讯。

32. 外存储器的使用

CX 可以与外存储器 U 盘进行数据交流,进行数据的上传和下载。

- 使用 U 盘时,数据文件存储于根目录,无法对子目录进行读写操作。
- CX 可对 MS-DOS 系统兼容的文本文件进行输入或输出操作。

- "S 类型"被选取时, CX 只能对 U 盘上扩展名为 "SDR"的文件进行显示和输入输出操作。
- 只在"T类型"被选取时, CX才能显示输出的代码数据文件。
- •不能以与只读文件相同的文件名来保存文件,也不能对只读文件的名称进行修改或删除。
- •《通讯操作手册》中对 U 盘数据输入输出格式有详细说明, 具体可向索佳客服中心咨询。
- CX 可用 U 盘最大存储容量可达 8GB。


32.1 U 盘插入

- 严禁在数据读写时拔出 U 盘, 否则会造成 U 盘或 CX 内数据的丢失。
- 严禁在数据读写中关闭仪器电源或取出电池, 否则会造成 U 盘或 CX 内的数据丢失。
- 仪器的防水性能须在电池仓盖、外存接口仓盖和外部接口护套等正确关闭时方能得以保证,未正确关闭的情况下严禁在有滴水或液体飞溅的环境下使用仪器。

U盘插入步骤

 向下滑动外存接口仓盖锁扣,向外打开仓 盖。

2. 将 U 盘对准 USB 插槽向里插入。

3. 关闭外存储器仓盖至听到"咔嗒"声。 •使用非标配 U 盘时仓盖可能会无法关闭。

数据类型选取 32.2

数据类型选取步骤

- 按{ESC}键至显示状态界面。
- 2. 按「USB]键进入〈外存〉模式界面。

3. 选取 "S 类型"或 "T 类型"后按[ENT]键 进入外存菜单界面。

Note

•根据所需通讯格式来选取"S类型"(索 佳格式)或"T类型"(拓普康格式)。

☞ 通讯设置: "33.1 仪器参数设置"

32.3 U盘数据下载

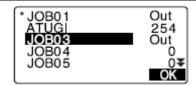
U 盘数据下载功能用于将保存于 CX 内存中的一个或者多个作业或代码数据下载并保存至 U 盘中。下载数据包括测量数据(距离、角度、坐标观测值)、已知坐标数据、测站数据、 后视数据、注记数据和代码等。

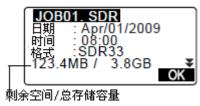
- 选取"S类型"时,保存数据文件的扩展名与输出的作业格式相对应,例如".SDR"。
- 选取"T类型"时, 仪器根据输出的作业格式自动设置数据文件的扩展名, 扩展名可以 讲行修改。

数据下载步骤

1. 按[USB]键进入<外存>模式界面和选取数 据类型。

"数据类型选取"步骤1至3




2. 选取"下载数据"显示内存作业名表。

3. 选取待下载作业名后按**[ENT]**键。 所选作业名右侧显示"Out"。可同时选取 多个作业输出。

- 4. 按[OK]键确认进入以下显示界面:
 - "S类型"数据输出界面:

"T类型"数据输出界面:

- 5. 如需修改文件名,可在此时输入"新文件 名.SDR"。
- 6. 按[ENT]键后选取数据输出格式。
 - •选取 "S 类型"时,按{►}键或{◀}键来 选 取 数 据 输 出 格 式 " SDR33 " 或 "SDR2x"。
 - 第 2 页菜单下的"发送归算数据"用于 是否发送归算数据的设置。
- 7. 按[**OK**]键将 **CX** 内存中的数据下载至 **U** 盘 存储器并以给定的文件名保存,下载完成 后返回作业名表界面。
 - 数据传输过程中按{**ESC**}键将中断和取 消数据的下载。

32.外存储器的使用

Note

- 文件名最大长度: 8 位字符(不含扩展名)。
- 文件名可用字符: 字母数字(仅大写字母)和下划线。
- 数据输出格式:
 - S 类型: SDR33/SDR2x
 - T类型: GTS(测量数据)/ GTS(坐标数据)/SSS(测量数据)/SSS(坐标数据)
- 文件出现重名时原有文件将被覆盖。

代码下载步骤

Note

- •代码下载仅对"T类型"数据有效,下载前需在通讯设置中选取好"T类型"。
 - 通讯设置:"33.1 仪器参数设置"
- 按[USB]键进入〈外存〉模式界面并选取"T 类型"。
 - ☞ "数据类型选取"步骤1至3
- 2. 选取"下载代码"。
- 3. 输入文件名后按{ENT}键。

- 4. 按[**OK**]键将 **CX** 内存中的代码数据下载至 **U** 盘存储器并以给定的文件名保存,下载 完成后返回作业名表界面。
 - 按{ESC}键将中断和取消代码数据的下载。

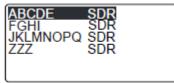
32.4 U 盘数据上传

U 盘数据上传功能用于将保存于 U 盘上的已知坐标或代码数据上传至 CX 内存当前作业中。

- 只有与 CX 作业数据格式相兼容的坐标数据才可以上传。
 - ☞ 数据输出格式和通讯指令:"通讯操作手册"

坐标上传步骤

- 1. 按**[USB]**键进入〈外存〉模式界面和选取数据类型。
 - "数据类型选取"步骤1至3
- 2. 选取"上传坐标"。
- 3. 确认当前作业名后按[OK]键。


选取"S类型"数据时界面:

选取"T类型"数据时界面:


- 选取上传数据格式
- 4. 从文件名表中选取上传文件的文件名后按 按**[ENT]**键。

32.外存储器的使用

5. 按**[YES]**键确认将数据上传至 CX 当前作业中。

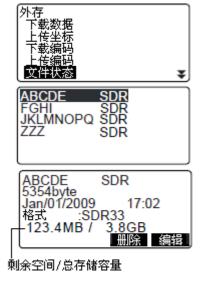
数据上传完成后返回<外存>模式界面。

• 按{ESC}键将中断和取消坐标数据的上 传。

代码上传步骤

- 1. 按**[USB]**键进入〈外存〉模式界面和选取数 据类型。
 - "数据类型选取"步骤1至3
- 2. 选取"上传编码"。
- 3. 从列出的文件表中选取上传的文件名后按 **(ENT)**键。
- 4. 按[**YES**]键确认将代码数据上传至 CX 内存中。

数据上传完成后返回〈外存〉模式界面。


32.5 文件查阅与编辑

文件状态功能用于显示保存于 U 盘上的文件信息,并可对文件进行更名或删除操作。

•对 U 盘进行格式化可清除 U 盘上的所有文件。 "32.6 外存格式化"

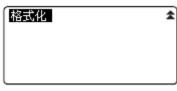
文件查阅与编辑步骤

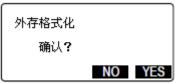
- 1. 按[USB]键进入<外存>模式界面和选取数据类型。
- 2. 选取"文件状态"显示 U 盘文件名表。
- 3. 选取文件名按[ENT]键显示文件信息。
 - •按[编辑]键后输入新文件名,再按[OK] 键确认可对文件进行更名。
 - 按[**删除**]键后再按[**YES**]键确认可删除所 选文件。

4. 按{ESC}键返回外存文件名表界面。

32.6 U 盘格式化

U盘格式化功能用于对U盘存储器进行格式化处理。

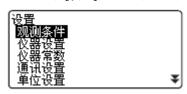


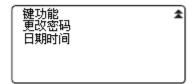

- U 盘格式化将清除 U 盘存储器上包括隐藏文件在内的所有文件。
- 在计算机上进行 U 盘格式化时,将文件系统选为"FAT"或"FAT32"。

U盘格式化步骤

- 1. 按[外存]键进入<外存>模式界面。
- 2. 选取"格式化"。

3. 按[**YES**]键确认并开始格式化。 格式化完成后返回<外存>模式。




33. 仪器参数设置

本章介绍仪器参数的设置内容、如何改变设置以及对仪器进行初始化的方法。

33.1 仪器参数设置

本节介绍在设置模式下有关仪器参数的设置内容以及如何改变这些参数设置的方法。 在状态界面下按**[设置]**键显示<设置>菜单界面如下:

• 观测条件设置

在<设置>菜单界面下选取"观测条件"进入观测条件设置界面:

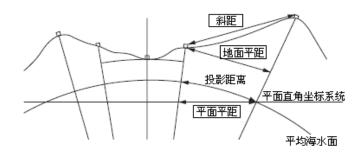
测距模式:<mark>斜距</mark> 平距类型:地面 倾斜改正:YES(H,V) 视准改正:YES 两差改正:K=0.20 水准面改正:No

坚角格式:
 类项距
 坐标格式:
 R-R-2
 角度显示:
 1"
 偏心竖角:
 锁定
 测站点号增量:
 100
 手设竖盘:
 No

设置项和选择项(注有"*"号为出厂默认设置)

测距模式	斜距*,平距,高差			
平距类型	地面*,平面			
倾斜改正	Yes(H, V)*, Yes(V), No			
视准改正	Yes*, No			
两差改正	K=0.20*, K=0.142, No			
水准面改正	No*, Yes			
竖角格式	天顶距*,垂直角,水平±90			
坐标格式	N-E-Z*, E-N-Z			
角度显示	1" *, 5"			
偏心竖角	锁定*,释放			
测站点号增量	0~99999(100*)			
手设竖盘	No*, Yes			
输入顺序	点名->代码*,代码->点名			

Ⅲ 平距类型


CX 通过斜距计算出平距,平距的显示有以下两种类型:

地面平距:

未施加水准面改正和比例因子改正的平距值。

平面平距:

施加了水准面改正和比例因子改正的平面直角坐标系平距值(当"水准面改正"设为 "No"时,仅施加比例因子改正)。

- 仪器仅对地面平距值进行记录,平距值的显示将根据平距类型设置进行。在记录菜单下查阅测量数据时,请根据需要将"平距类型"和"比例因子"设置好。
- 在选取了"T类型"后或使用 GTS 指令发出平距请求时,无论水准面改正和比例因子的设置如何。输出的都是未经水准面改正和比例因子改正的"地面平距"值。

■ 倾角自动补偿

CX 通过双轴倾斜传感器自动测定仪器整平后竖轴存在的微小倾角,并对由此引起的误差自动对垂直角和水平角观测值进行补偿。

- 待显示稳定后读取经自动补偿的角度观测值。
- 竖轴误差会对水平角观测值产生影响,因此当仪器未完全整平好时,由于倾角补偿的原因,即使仅纵转望远镜也会使水平角观测值发生变化。

改正后水平角值=水平角观测值+倾角/tan(垂直角)

• 当望远镜照准天顶或天底附近时, 仪器不对水平角进行补偿。

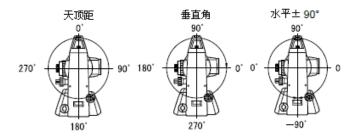
◎ 视准差改正

CX 具有自动改正由于横轴误差和水准轴误差引起的视准误差的功能。

■ 水准面改正

CX 具有将斜距归算成平距的功能,但归算时并未考虑高程因素。在高海拔地区测量 作业时,建议进行水准面改正,球面距离计算公式如下:

球面距离 =
$$\frac{R}{(R+H)} \times HD$$


式中: R 为椭球曲率半径(6371000.000m)

H为测站点与目标点的高程平均值

HD 为平距值

• 高程平均值根据测站点高程和目标点高程自动计算获得。

■ 竖角类型

🔟 偏心竖角

用于在角度偏心测量中是否采用固定竖直角方式的设置。

Ⅲ 输入顺序

用于点名和代码输入顺序的设置。

33.仪器参数设置

• 仪器设置

在<设置>菜单界面下选取"仪器设置"进入仪器设置界面:

关机方式:30分钟

7 对比度 : 10 恢复功能: 并 EDM 关闭:3分钟

设置项和选择项(注有"*"号的为出厂默认设置)

关机方式	5 分钟, 10 分钟, 15 分钟, 30 分钟*, 手动
亮度	0~5 级 (3*)
对比度	0~15 级(10*)
恢复功能	开*, 关
EDM 关闭	0~99 分钟 (3*)

🗓 自动关机

在选定的时间内无任何操作时 CX 会自动关机以节省电能。

恢复功能

恢复功能设置为"开"时,关机后重新开机仪器将恢复关机前的显示界面。

•恢复功能设置为"关"时,关机后重新开机原先输入仪器的测站等数据将丧失。

EDM 关闭

"EDM 关闭"用于设置测距完成后多长时间关闭 EDM。此功能可有效缩短从测距完成到启动的首次测量时间。

0 : 测距完成后立即关闭 EDM

1~98: 测距完成 1~98 分钟后关闭 EDM

99 : 测距完成后保持开启 EDM

• 通讯设置

在<设置>菜单界面下选取"通讯设置"进入通讯设置界面:

Ŧ

无线通讯: NO 波特率 : 9600bps

数据位 :8位 奇偶校验:NO

停止位 : 1位 和检验 : NO ACK/NAK:NO

CRLF :NO

ACK模式:标准

设置项和选择项(注有"*"号的为出厂默认设置)

无线通讯	No*, Yes
波特率	1200bps, 2400bps, 4800bps, 9600bps*, 19200bps, 38400bps
数据位	8 位*, 7 位
奇偶校验	No*, 奇, 偶
停止位	1 位*, 2 位
ACK/NAK	No*, Yes

选取"S类型"时增加的设置项和选择项

和校验	No*, Yes
-----	----------

选取"T类型"时增加的设置项和选择项

CR, LF	No*, Yes
ACK 模式	标准*, 省略

Note

- "无线通讯"仅对内置蓝牙模块机型显示。
- · CX 兼容的数据通讯格式类型:

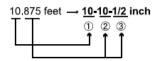
T 类型 (拓普康)	GTS(测量数据/坐标数据), SSS(测量数据/坐标数据)
S 类型 (索佳)	SDR33, SDR2X

□ 通讯指令和数据格式:《通讯操作手册》

33.仪器参数设置

• 单位设置

在<设置>菜单界面下选取"单位设置"进入单位设置界面:



设置项和选择项(注有"*"号的为出厂默认设置)

温度	°C*(摄氏度), °F(华氏度)
气压	hPa*(毫巴),mmHg(毫米汞柱),inchHg(英寸汞柱)
角度	度*,百分度,密位
距离	米*,英尺,英寸
英尺	国际英尺* (1m=3.280839895),美制英尺(1m=3.280833333)
	(仅当距离单位设为"英尺"或"英寸"时显示)

◎ 英寸小数

"英寸小数"是美国采用的一种单位,举例说明如下:

- ① 10,000 feet
- 2 0.875 feet x 12=10.5 inch
- 3 0.5 inch=1/2 inch

 即使选取了"英寸"单位,包括面积计算结果在内的所有数据均以英尺单位输出,输入 的距离也必须以英尺为单位,此外,当以英寸显示的结果超出显示范围时将切换为英尺 显示。

Ⅲ 国际英尺与美制英尺

CX 可以国际英尺或美制英尺单位显示距离值,本说明书中的英尺均为国际英尺的简称。

• 日期时间设置

在<设置>菜单界面下选取"日期时间"进入日期时间设置界面:

日期时间

日期: Jan / 01 / 2012 时间: 16:44:38

日期	2012年12月20日输入20120720(年年年年月月日日)
时间	14: 35: 17 输入 143517 (时时分分秒秒)

33.2 测距参数设置

本节介绍测距参数设置的有关内容。

• 注有"*"号为出厂默认设置。

在测量模式第 2 页菜单下按[EDM]键进入测距参数设置界面:

EDM

测距模式:<mark>单次精测</mark> 反射器 :棱镜

稜镜常数: 0

发射光:指向光

EDM 温度 : **[15 °C** 气压 : 1013 kPa ppm : 0

无

| 无棱镜测程: | Oppm

•[0ppm]:将气象改正值设置为"0",温度和气压值恢复为默认值。

₽

Ŧ

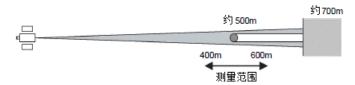
• 气象改正值 "ppm" 既可直接输入,也可通过输入"温度"和"气压"值后自动计算。

设置项、选择项和输入范围(注有"*"号为出厂默认设置)

测距模式	重复精测*,均值精测(1~9次),单次精测,重复速测,				
	单次速测,跟踪测量				
反射器	棱镜*,无棱镜,远程无棱镜				
棱镜常数	−99~99 mm(棱镜时:"0*")				
发射光	指向光*,导向光				
温度	-30∼60 °C(15*)				
气压	500∼1400 hPa(1013*), 375∼1050 mmHg(760*)				
ppm	-499~499 (0*)				
无棱镜测程	5~1800 m(0*),不需设置时输入"0"(显示值"无")				

Ⅲ 无棱镜测程设置

超远距离无棱镜测距时,由于距离远而造成测距光斑直径变大,很难确保测距光斑全部落在待测物体面上,部分光斑会落在待测物体前方或后方的物体面上,对测量结果的精度产生影响。


"远程无棱镜模式使用注意事项"

假如我们对测距光斑能抵达的距离进行限制,避免测距光斑落在该距离外的物体面上,便可获得正确的测量结果。

无棱镜测程设置功能就是针对此问题而增设的,当无棱镜测程被设置为某值时,远程无棱镜模式下最大测程将被限制为"设置值"+200m。

示例:

当待测物体和其后方墙体的距离分别为 500m 和 700m 时,将"无棱镜测程"设置为 400m,则测量范围为 400m 到 600m,便可消除墙体面对测量结果的影响。

◎ 气象改正数

- CX 通过发射光束进行距离测量,光束在大气中的传播速度会因大气折射率不同而变化,而大气折射率与大气的温度和气压有着密切的关系。当测量需要顾及此影响时请正确设置气象改正数。
- CX 是按温度为 15℃、气压为 1013 hPa、湿度为 50%时气象改正数为 "0"设计的。
- CX 可根据输入的温度和气压值计算出相应的气象改正数并存储在内存中(默认湿度值为50%), 计算公式如下:

气象改正数 ppm =
$$279.520 - \frac{0.291361 \times p}{1 + 0.003661 \times t} + \frac{0.04127 \times e}{1 + 0.003661 \times t}$$

式中:

t:温度值(℃)

p : 气压值 (hPa)

e: 水蒸气气压值(hPa)

$$e = h \times \frac{E}{100}$$

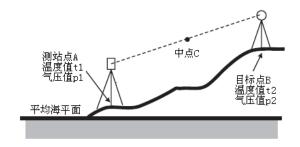
h: 相对湿度值(%)

E:饱和水蒸气气压值(hPa)

$$E = 6.11 \times 10^{\frac{(7.5 \times t)}{(t + 237.3)}}$$

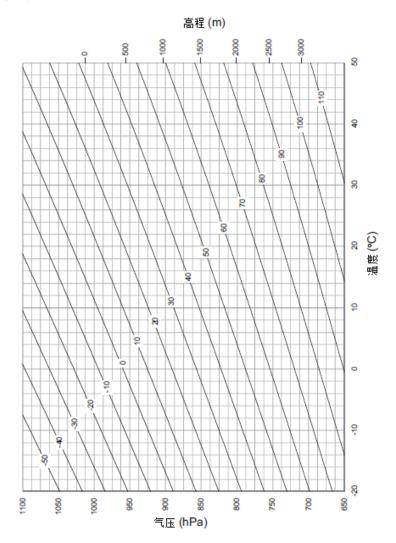
 在通常的大气环境下,当气压保持不变,温度每变化 1℃,或者温度保持不变, 气压每变化 3.6hPa 时,都将引起所测距离值 1ppm 的变化,即每公里 1mm 的变化。因此,在进行高精度距离测量时,建议使用精密的量测设备测定大气的温度和气压值,以求取气象改正数对距离测量结果施加气象改正。

33.仪器参数设置


• 温度和气压值的确定方法:

平原地区: 采用测线中点处的温度和气压值。

山区:采用中点C处的温度和气压值。


如果无法测定中点处的温度和气压值 可测定测站点A和目标点B处的温度和气压值并采用其平均值。

温度平均值: (t1+t2)/2 气压平均值: (p1+p2)/2

• 不进行气象改正时将 ppm 值设为 "0"。

气象改正图

№ 棱镜常数改正

不同棱镜具有不同的棱镜常数改正值,测量前应正确设置所用棱镜常数改正值。当"反射器类型"设置为"无棱镜"或"远程无棱镜"时,棱镜常数改正值自动设置为"0"。

33.3 键功能定义

键功能定义允许用户根据其测量工作的需要对测量模式界面下的软键功能菜单进行自定 义。这一独具特色的功能即可针对不同作业的具体需要,又可满足不同观测人员操作习惯 的要求,从而极大地提高测量工作效率。

- 已定义的软键功能将被永久保存直至再次被定义为止。
- 仪器为用户提供有两个软键键位寄存位置,即"用户定义1"和"用户定义2",用于用户定义键位的寄存。
- 寄存的用户定义键位可以随时恢复。

- 将用户定义的功能键位进行寄存时,原寄存位置中的内容将被清除。而当恢复寄存的键位功能时,原软键上定义的功能键位将被寄存的功能键位所替代。
- 仪器出厂时,测量模式下各页菜单功能键位定义如下:

 第1页菜单
 [观测]
 [切换]
 [置零]
 [坐标]

 第2页菜单
 [菜单]
 [气泡]
 [置盘]
 [EDM]

 第3页菜单
 [对边]
 [偏心]
 [记录]
 [放样]

•下列为可以定义到软键上的功能清单:

[观测]: 距离测量

[切换]:测量结果显示方式切换

[置零]: 水平角置零

[坐标]: 坐标测量

[复测]: 重复测量

[对边]:对边测量

[放样]: 放样测量

[偏心]: 偏心测量

[记录]: 进入记录数据菜单

[EDM]: 测距参数设置

[**置盘**]:后视坐标方位角设置 [**气泡**]:图形气泡和倾角显示

[菜单]: 进入常用程序菜单(坐标测量、放样测量、偏心测量、重复测量、地形测量、

对边测量、悬高测量、后方交会、面积计算、直线放样、弧线放样、点投影、

点到线测量、交点计算、导线平差、线路计算、横断面测量等)

[悬高]: 悬高测量

[后交]: 后方交会测量

[右/左]: 左、右水平角选择

[ZA/%]: 天顶距或%坡度显示切换

[锁定]: 水平角锁定和解锁

[回显]: 重新显示最新测量结果

[**信号**]:测距信号检测 [**面积**]:面积测量与计算 [**英尺/米**]:距离单位切换显示 [**仪器高**]:仪器高和目标高设置

[放线]: 直线放样测量 [放弧]: 直线放样测量 [投点]: 点投影计算 [点到线]: 点到线测量

[交点]: 交点计算 [**导线**]: 导线平差 [**线路**]: 线路计算

[**断面**]: 横断面测量 [**地形**]: 地形测量

[光对点]: 打开对点激光束

[角距-S]/[角距-T]: 将距离和角度观测值实时从数据通讯口输出

[角度-S]/ [角度-T]: 将角度观测值实时从数据通讯口输出 [坐标-S]/ [坐标-T]: 将坐标观测值实时从数据通讯口输出

[--]: 未定义

• 键功能定义实例

在对软键功能进行定义时,可以将相同的功能定义到不同菜单页上(如例 1),或者将相同功能定义到同一菜单页上(如例 2),也可以将每一功能只定义在一个软键上(如例 3)。

例 1:

第1页菜单	[观测]	[切换]	[设角]	[EDM]
第2页菜单	[观测]	[切换]	[设角]	[EDM]

例 2:

第 1 页菜单 **[观测] [观测] [切换] [切换]**

例 3:

第 1 页菜单 **[观测] [切换] [——] [——]**

键功能定义步骤

- 1. 在<设置>模式菜单下选取"键功能"进入 <键功能>菜单界面。
- 2. 选取"键定义", 屏幕显示当前软键功能定义的键位。
- 按{◀}或{▶}键将光标移至需重新定义功能的软键键位上(光标所在键位闪动显示。
- 4. 按{▲}或{▼}键改变至所需功能,再按{◀} 或{▶}键将光标移至下一需定义功能的软 键键位上。
- 5. 重复步骤 3 和 4 完成全部软键功能定义。
- 6. 按[**OK**]键结束键功能定义返回<键功能> 菜单界面。

此时,测量模式下显示的即为新定义的功能菜单。

键功能 键定义 键寄存 键恢复

键功能寄存步骤

- 1. 对键功能进行定义。 "键功能定义步骤"
- 2. 在<设置>模式菜单下选取"键功能"进入 <键功能>菜单界面。
- 3. 选取"键寄存"后选取用户定义键位寄存位置"用户定义1"或"用户定义2"。

4. 按{ENT}键将已定义好的功能键位寄存到 所选位置后返回<键功能>菜单界面。

键功能恢复步骤

- 1. 在<设置>模式菜单下选取"键功能"进入 <键功能>菜单界面。
- 2. 选取"键恢复"。

3. 选取欲恢复的功能键位"用户定义 1"或 "用户定义2"或"默认定义"(出厂默认 键位),按 {ENT}键恢复功能键位返回<键 功能>菜单界面。

此时,测量模式下显示的即为所恢复的功 能菜单。

33.4 密码设置

更改密码功能用于设置或更改控制仪器操作权限的密码。

• 仪器出厂时未设置密码。

更改密码步骤

- 1. 在<设置>模式菜单下选取"更改密码"进 入<更改密码>界面。
- 2. 输入原密码后按{ENT}键。
- 3. 两次输入新密码后按{ENT}键结束密码更 改返回<键功能>菜单界面。
 - 若在新密码处不输入任何内容直接按 {ENT}键则取消密码设置。

Note

• 密码长度: 3~8 位字符。

更改密码

再次输入密码

33.5 仪器初始化

本节介绍对仪器实施初始化的两种方法,即开机时对仪器参数设置进行初始化和开机时对 仪器内存数据进行初始化。

- 仪器参数设置初始化:将测距(EDM)参数和设置模式下的各仪器参数(包括键功能)恢复为仪器出厂时的默认设置。
 - □ 出厂默认设置: "33.1 仪器参数设置"和"33.3 键功能定义"
- 仪器内存数据初始化:清除内存中所有作业中的数据、己知点坐标数据和代码数据,恢复仪器出厂时的状态。

• 仪器参数设置初始化不会改变"距离加常数值",若需恢复为出厂值需将其设为"0"。

仪器参数设置初始化步骤

- 1. 关闭仪器电源。
- 2. 按住{F4}和{B.S.}键后按{ON}键开机。
- 3. 屏幕上显示"默认值"并将仪器有关参数 设置初始化。

仪器内存数据初始化步骤

- 1. 关闭仪器电源。
- 2. 按住**{F1}、{F3**}和**{B.S.**}键后按**{ON**}键开 机。
- 3. 屏幕上显示"清除内存…"并对仪器内存 实施初始化。

34. 错误信息

本章介绍操作仪器过程中发生错误时给出的提示信息及其含义,如果同一错误信息不断出 现或者出现下列之外的错误信息,请与索佳客服中心联系。

作业名错误 (Bad file name)

向U盘存储器保存作业时未输入作业名。

计算错误 (Calculation error)

后方交会测量出现了相同的已知坐标点。 正确输入已知点坐标。

和检验错误 (Checksum error)

仪器与计算机间发生数据发送和接收错误。 重新进行数据发送与接收。

时钟错误 (Clock error)

系统锂电池电压不足或电量已耗尽,请与索佳客服中心联系更换电池。

通讯错误(Communication error)

来自外部设备的坐标数据接收错误。

检查通讯参数设置是否正确。

"33.1 仪器参数设置"

E205 错误 (E205)

关闭仪器电源, 更换充足电的电池。

更换电池后如果错误信息仍重复出现,请与索佳客服中心联系。

E04X 错误 (E04X)

CX 出现问题,请与索佳客服中心联系。

闪存写错误 (Flash write error!)

无法读取数据, 请与索佳客服中心联系。

密码错误 (Incorrect Password)

密码输入错误,重新输入正确密码。

插入U盘存储器(Insert USB)

未插入U盘存储器。

无效 U 盘存储器 (Invalid USB)

插入了不正确的U盘存储器。

无效基线 (Invalid baseline)

直线放样测量或点投影中, 基线定义不正确。

内存已满 (Memory is full)

已无内存空间, 无法存入数据。

删除内存作业中无用数据后重新进行保存操作。

需观测起点 (Need 1st obs)

对边测量中未正确观测起始点。

重新照准起始点后按[观测]键进行测量。

需观测目标点 (Need 2nd obs)

对边测量中未正确观测目标点。

重新精确照准目标点后按[对边]键进行测量。

需测量偏心点 (Need offset pt.)

偏心测量中未正确观测偏心点。

重新精确照准偏心点后按[观测]键进行测量。

需观测棱镜 (Need prism obs)

悬高测量中未正确观测棱镜点。

重新精确照准棱镜后按[观测]键进行测量。

新密码不一致 (New password Diff.)

设置新密码时,两次输入值不一致。

重新正确输入新密码。

无数据(No data)

在查找、调用坐标或代码数据过程中由于数据不存在或数据量过大而中断。

无文件 (No file)

当前 U 盘存储器中无已知坐标数据文件或无所需数据文件。

计算无解(No solution)

后方交会测量中,测站点坐标计算不收敛。 分析测量结果,必要时进行重测。

无 N 或 E 坐标,读错误 (North/East is null, Read error)

N或E坐标值输入栏为空。 在输入栏内输入坐标值。

超出范围 (Out of range)

仪器倾角超出倾角补偿范围。 重新整平仪器。

超出值域 (Out of value)

显示%坡度时,坡度值超出显示范围(±1000%)。 悬高测量时,垂直角观测值超出水平±89°或者距离测量值大于9999.999m。 将测站设在离目标更远处。

后方交会测量时,测站点坐标计算值相差太大。 重新进行观测。

直线放样测量中,比例因子小于 0.100000 或大于 9.999999。

面积计算时,所得面积值超出显示范围。

线路点已存在 (Pt already on route)

导线自动搜寻形成过程中,试图终止于一非起点的导线点上。按任意键返回最末点后指定下一导线点继续搜寻或指定闭合到起点形成闭合导线。

起点与终点距离过近(Pt1-Pt2 too near)

"点到线测量"基线定义时,所指定基线起点和终点距离过近。 将起、终点间的距离扩大 1m 或更多。

只读文件 (Read-only file)

U盘存储器中的只读文件不允许编辑或删除。

相同坐标点 (Same coordinates)

直线放样测量中,基线起点、终点输入了相同的坐标值,仪器无法定义基线。

SDR 格式错误 (SDR format err)

所读作业为非 SDR 格式作业。检查确认作业后再读取。

需先输出(Send first)

作业未经通讯输出到计算机,无法删除。 将作业输出到计算机后再删除。

无返回信号 (Signal over)

无棱镜或远程无棱镜模式下对近距离棱镜进行测量、或者望远镜接收到过强光信号。 改变目标类型设置为无棱镜或远程无棱镜,或者将无棱镜或远程无棱镜模式改为棱镜模式。

无测站坐标(Station coord is Null)

测站坐标值为空,无法进行计算。

输入测站坐标。

超出使用温度范围(Temp Rnge OUT)

超出仪器使用温度范围,无法正常进行精确测量。

采取打伞遮蔽阳光直射等方法使温度降低后再进行测量。

超时 (Time out)

观测条件不好造成返回测距信号过弱,无法在指定时间内测出结果。

重新照准目标或增加棱镜数量后再进行测量。

密码过短(Too short)

输入的密码长度少于3个字符。

正确输入3~8位字符密码。

U 盘错误 (USB error)

U盘读写数据时发生错误。

U 盘已满! (USB full!)

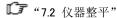
U盘已无存储空间写入数据。

U 盘未插入 (USB not found)

外存操作模式下 U 盘被拔出。

计算结果值过大, 屏幕无法显示。

35. 仪器检校

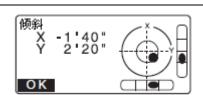

全站仪系精密测量仪器,为保证仪器的性能和精度,测量作业实施前后的检验和校正十分 必要。

- 始终按照 "35.1 圆水准器检校"至 "35.9 激光对中器检校"介绍的顺序和步骤对仪器进行仔细检校。
- 仪器经长期存放、运输或受到强烈撞击而怀疑受损时,应注意进行特别仔细的检查和保养。
- 检校仪器前应确保仪器架设的稳定和安全。

35.1 圆水准器检校

圆水准器检校步骤

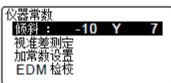
1. 利用屏幕显示的图形水准器整平仪器。


- 检查圆水准器气泡的位置。
 如果气泡保持居中则无需校正;若气泡偏离则按下列步骤进行校正。
- 3. 观察水准气泡的偏离方向。 用校正针松开与气泡偏离方向相反的圆水 准器校正螺丝使气泡居中。

4. 调整所有的三个校正螺丝,使之松紧程度 大致相同且保持气泡居中。

- 注意应使三个校正螺丝的松紧程度大致相同。
- 过度旋紧校正螺丝会损坏圆水准器。

圆水准器校正螺丝


35.2 倾斜传感器零点误差检校

在倾斜传感器零点位置正确的情况下,利用显示的倾角值可以精确地整平仪器和进行正确的倾斜补偿。但如果倾斜传感器存在零点误差,倾角值则无法正确反映仪器的整平状况也无法对测量结果进行正确的倾斜补偿,倾斜传感器的零点误差的检验和校正可按下列步骤进行。

倾斜传感器零点误差检验步骤

- 1. 仔细整平仪器。
- 2. 将水平角值置零。 在测量模式第 1 页菜单下按两次[**置零**]键 将水平角值置零。
- 3. 按[设置]键进入<设置>模式菜单界面。
- 4. 选取"仪器常数"显示当前纵、横方向上的零点误差改正值 X 和 Y。
- 5. 选取"倾斜: X Y"后按**{ENT}**键显示纵、横方向上的倾角值。
- 6. 稍候片刻等显示稳定,记下倾角值 X1 和 Y1 后按**{OK}**键。
- 7. 松开水平制动,参照所显示的水平角值将 仪器照准部转动 180°, 然后再旋紧水平制 动。
- 8. 稍候片刻等显示稳定后记下倾角值 X2 和Y2。

9. 用下面公式计算倾斜传感器的零点偏差 值:

> 纵向偏差值 X=(X1+X2)/2 横向偏差值 Y=(Y1+Y2)/2

如果计算所得偏差值均在**±20**"以内则不需要校正,按**{ESC}**键返回<仪器常数>界面, 否则按下述步骤进行校正。

倾斜传感器零点误差校正步骤

- 按[OK]键计算并显示X和Y方向上的原 改正值和新改正值。
- 11. 确认所显示改正值 X 和 Y 是否均在±180 在校正范围内。

如果是按**[YES]**键确认对原改正值进行 更新后返回<仪器常数>界面,转至步骤 12继续再检验。

如果不则按[**NO**]键退出校正操作返回< 仪器常数>界面,与索佳客服中心联系。

偏差值 当前值 X-10 Y 7 新 值 X 4 Y-11

倾斜传感器零点误差再检验步骤

- 12. 在<仪器常数>界面下选取"倾斜: X Y"后按**[ENT]**键。
- 13. 稍候片刻等显示稳定后记下倾角值 X3 和 Y3。
- 14. 松开水平制动转动仪器照准部 180°。
- 15. 稍候片刻等显示稳定后记下倾角值 X4 和 Y4。
- 16. 用下面公式计算倾斜传感器的零点偏差值:

纵向偏差值 X=(X3+X4)/2 横向偏差值 Y=(Y3+Y4)/2

当偏差值均在±20"以内则不需要校正,按{ESC}键结束检校,否则重新进行检校。若进行了2或3次检校后偏差值仍超出±20",请与索佳客服中心联系。

35.3 视准误差测定

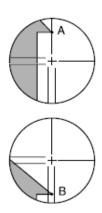
视准误差测定功能用于测定出 CX 的视准误差值并将其记录在仪器内存中,供测量作业时对仪器在单盘位下获得的观测值进行视准差改正。

视准误差测定步骤

- 1. 精确整平仪器,在距仪器约 100m 处的水平方向上设置一参考点。
- 2. 在<设置>模式菜单界面下选取"仪器常数",再选取"视准差测定"进入<视准差测定>界面。

- 3. 盘左精确照准参考点后按[OK]键。
- 4. 旋转仪器照准部 180°,盘右精确照准同一参考点后按[**OK**]键。 屏幕显示测定所得视准差值和指标差值。

- 5. 按[YES]键确认将其保存到仪器内存。
 - 按[NO]键放弃测定所得的视准差值返回 <视准差测定>界面。



35.4 分划板检校

检验 1: 竖丝与横轴正交性的检验步骤

- 1. 精确整平仪器。
- 2. 选择一清晰目标(如屋顶角边缘),用竖丝 上部 A 处精确照准目标。
- 3. 旋转仪器垂直微动手轮使目标下移至竖丝 的下部 B 处。

如果目标平行于竖丝移动则不需要进行校 正,否则请与索佳客服中心联系。

检验 2: 竖丝与横丝位置正确性的检验步骤

- 检验应在多云和无大气抖动的条件下进行。
- 检验时应将"倾斜改正"和"视准改正"分别设置为"Yes(H. V)"和"Yes"。
- 在距离仪器约 100 米的平坦地面处设置一 清晰目标。

- 2. 精确整平仪器后开机。
- 3. 在测量模式下用盘左位置精确照准目标中心,读取水平角读数 A1 和垂直角读数 B1。例如:

水平角读数A1=18°34'00" 垂直角读数B1=90°30'20"

4. 用盘右位置精确照准目标中心,读取水平 角读数 A2 和垂直角读数 B2。 例如:

水平角读数A2=198°34'20" 垂直角读数B2=269°30'00"

5. 计算 A2-A1 和 B2+B1。

若A2-A1 值在 180°00′00″±20″以内, 若B2+B1 值在 360°00′00″±40″以内, 则不需要进行校正。

例如: A2-A1

 $= 198^{\circ} 34' 20" - 18^{\circ} 34' 00"$

= 180° 00' 20"

B2+B1

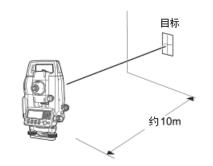
=269°30' 00" +90°30' 20"

 $=360^{\circ}00'\ 20"$

如果经2至3次检验结果均超出所述范围, 请与索佳客服中心联系。

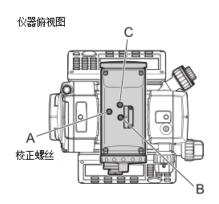
35.5 指向光轴检校

指向光检校功能用于指向光轴与望远镜视准轴共轴性的检验及校正。


• 指向光斑被用于指示望远镜照准点的位置,但一般情况下二者很难完全精确重合。因此 在距离 10m 时,指向光斑与望远镜照准点的偏差在 6mm 以内被视为正常情况。

指向光轴检验步骤

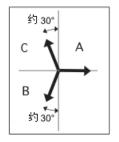
- 1.用一白纸在其中心部位画上十字目标。
- 2.将目标设在距离约 10m 处的墙上,用望远镜精确照准目标十字中心。
- 3.打开仪器指向光,检查指向光斑中心与十 字中心的偏离程度。



- 从望远镜视场无法看到指向光斑,检查 只能用肉眼进行。
- 4.如果指向光斑中心与十字中心的偏离在 6mm 以内则无需校正,否则按下述步骤进 行校正。

指向光校正步骤

1.如该图所示,取下仪器顶部的 3 个橡胶帽 便可看到指向光轴调整螺丝。



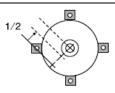
35.仪器检校

- 2.使用附件配备的六角扳手调整校正螺丝 A、B和C,至使指向光斑中心与十字中心 重合。
 - 顺时针分别转动校正螺丝 A、B 和 C(旋紧方向)时,指向光斑的移动方向如图所示。

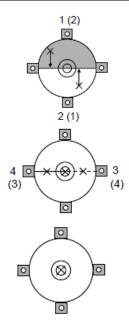
- 调整时应使 3 个调整螺丝的松紧度大致相同。
- 调整完毕后应及时将 3 个橡胶帽套上, 避免丢失。

35.6 光学对中器检校

光学对中器检验步骤


- 1. 精确整平仪器,使地面测点精确对准光学 对中器十字丝中心。
- 2. 转动仪器照准部 180°, 检查十字丝中心与 测点间的相对位置。 若测点仍位于十字丝中心则不需要校正, 否则按下述步骤进行校正。

光学对中器校正步骤


3. 用脚螺旋校正偏离量的一半。

4. 握紧仪器上部,旋下光学对中器目镜护盖 后旋下光学对中器分划板护盖。 重新旋上光学对中器目镜护盖,利用光学 对中器的 4 个校正螺丝按下述方法校正剩 余的另一半偏移量。

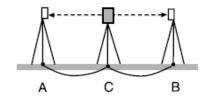
- 5. 当测点位于如图所示的下半部(上半部)区域内:
 - (1) 轻轻松开上(下)校正螺丝。
 - (2)以同样程度旋紧下(上)校正螺丝。 使测点移至左右校正螺丝的连线上。
- 6. 当测点位于左右校正螺丝连线的实线(虚线)位置上:
 - (3) 轻轻松开右(左)校正螺丝。
 - (4)以同样程度旋紧左(右)校正螺丝。 使测点移至十字丝中心。
- 7. 边旋转仪器照准部边检查测点位置是否始 终位于十字丝中心,需要时重复上述步骤 进行校正。
- 8. 旋下光学对中器目镜护盖, 旋上光学对中器分划板护盖后重新旋上光学对中器目镜 护盖。

• 不要过度旋紧 4 个校正螺丝,以避免分划板超出校正范围。

35.7 距离加常数测定

CX 在出厂时其距离加常数 K 已被调整为"0",但由于距离加常数会发生变化,有条件时应在已知基线上定期进行精确测定,如无条件可按下述步骤进行测定。

4


- 仪器和棱镜的对中误差及照准误差都会影响距离加常数的测定结果,因此在检测过程中应特别细心以减少这些误差的影响。
- 检测时应注意使仪器和棱镜等高,如果检测是在不平坦的地面上进行,要利用水准仪 来测定以确保仪器和棱镜等高。

距离加常数测定步骤

1. 在一平坦场地上选择相距约 100m 的两点 A和B,分别在A、B点上架设仪器和棱镜, 同时定出中点C。

- 2. 精确测定 A、B 点间水平距离 10 次并计算 其平均值。
- 3. 将仪器移至中点 C 点 在 A 点和 B 点上架 设棱镜。

- 4. 精确测定 CA 和 CB 的水平距离 10 次,分别计算平均值。
- 5. 按下面的公式计算距离加常数:

6. 重复步骤1至5测定距离加常数2至3次。 如果计算所得距离加常数K值在±3mm以 内,不需要进行校正,否则请与索佳客服 中心联系。

距离加常数设置步骤

按照目标类型(棱镜、无棱镜或远程无棱镜)的不同,可以将测定所得的距离加常数设置 到仪器内。

- 1.按[设置]键进入<设置>模式菜单界面。
- 2.选取"仪器常数"后选取"加常数设置"。

3.选取目标类型为"棱镜"(以"棱镜"为例)。

4.输入距离加常数值后按[OK]键完成设置。

35.8 测距光轴检校

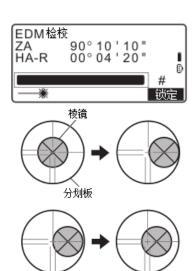
测距光轴检校功能用于测距光轴与望远镜视准轴共轴性的检验与校正。在进行了目镜十字 丝检校后需要进行此项检校。

Note

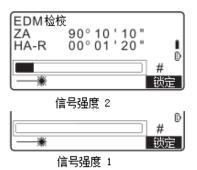
• 检校时按先"棱镜"后"无棱镜"的目标类型顺序进行,不要对"远程无棱镜"进行 此项检校。

棱镜测距光轴水平向检验步骤

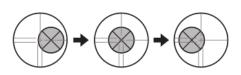
- 1.在距仪器 30m 至 50m 位置上设立一棱镜。
- 2.按[设置]键进入<设置>模式菜单界面。
- 3.选取"仪器常数"后选取"EDM 检校"。



4.在目标类型为"棱镜"模式下用照准棱镜中心。


此时仪器发出蜂鸣声。

- 5.按**[锁定]**键锁定接收到的信号强度。 信号强度计量条右侧显示"#"号。
- 6.缓慢顺时针旋转水平微动手轮使仪器照准 部向左转动,直至蜂鸣声停止。
- 7.缓慢逆时针旋转水平微动手轮使仪器照准 部向右转动,直至蜂鸣声响起。

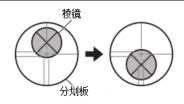


确认步骤 7 和步骤 6 的信号强度如右图所示。

- 8.记下此时的水平角显示值。
- 9. 逆时针旋转水平微动手轮使仪器照准部向 右转动,直至蜂鸣声停止。
- 10. 缓慢顺时针旋转水平微动手轮使仪器照准部向右转动,直至蜂鸣声响起。 确认与步骤7相同的信号强度显示界面。
- 11. 记下此时的水平角显示值。
- 12. 计算步骤 8 和步骤 11 记录水平角的平均值(信号中心的水平角值)。
- 13. 旋转水平微动手轮使仪器照准棱镜中心,将水平角显示值与计算所得平均值进行比较。

若棱镜中心水平角显示值与平均值的差值在 2′以内则无需校正,否则请与索佳客服中心联系。

[示例]


步骤 8: 0°01'20" 步骤11: 0°07'00" 平均值: 0°04'10"

[示例]

显示值: 0°02'20" 平均值: 0°04'10" 差值: -0°01'50"

棱镜测距光轴垂直向检验步骤

14. 旋转垂直微动,按水平向检验类似方法 进行测距光轴垂直向检验。

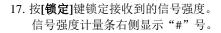
若棱镜中心垂直角显示值与平均值的差值在 2′以内则无需校正,否则请与索佳客服中心联系。

[示例]

 棱镜上侧读数:
 90°12'30"

 棱镜下侧读数:
 90°04'30"

 平均值:
 90°08'30"


 棱镜中心显示值:
 90°08'50"

农镇中心亚小值: 90°00°50° 昂示值与平均值的差值: 20°

<u>无棱镜测距光轴检验步骤</u>

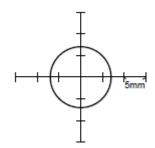

如果仪器处于"锁定"状态,按[**锁定**]键解 锁。

- 15. 按{SHIFT}键将目标类型切换为"无棱 键。
- 16. 用望远镜照准棱镜中心。

18. 按前述步骤 6 至步骤 14 同样方法进行无 棱镜测距光轴的检验。

若棱镜中心角度显示值与平均值的差值 均在 2′以内则无需校正,否则请与索佳 客服中心联系。

35.9 激光对中器检校

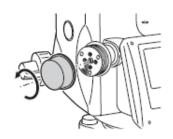

CX 的激光对中器检校时需使用专用的校正靶(印在本说明书的尾部,使用时将其剪下)。由于该标靶为纸质,要特别注意防水。

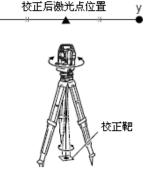
激光对中器检验步骤

1. 精确整平仪器并打开对中激光束。

☞ "7.架设仪器"

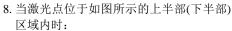
- 2. 将校正靶置于地面并使其中心对准激光 点,边转动仪器照准部边观察激光点与校 正靶中心的重合情况。
 - 激光点与校正靶中心始终保持重合则无需校正。
 - 激光点偏离中心但位于校正靶圆之内则 转至步骤3进行校正。
 - 激光点偏离中心且在校正靶圆之外,请 与索佳客服中心联系。

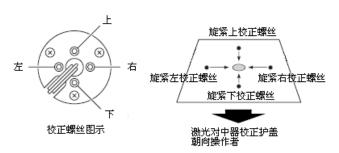



激光对中器校正步骤

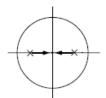
3. 逆时针旋下激光对中器校正护盖。

- 4. 打开对中激光束。
- 5. 用"x"标注激光点的当前位置。
- 6. 转动仪器照准部 180°, 用"y"标注激光点的新位置。
 - **x、y** 连线的中点即为校正后激光点的位置。
- 7. 标注校正后激光点位置并将校正靶中心对 准该点位。

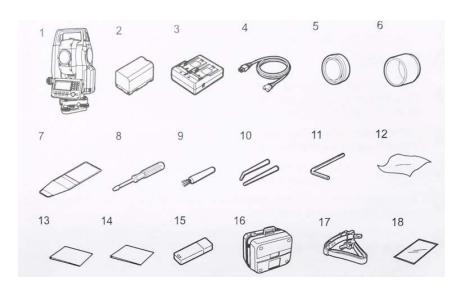

通过调整 4 个校正螺丝将偏离的激光点最后调整至该位置上。


- 校正时要特别注意以同等松紧程度调整各 校正螺丝,严禁过度旋紧校正螺丝。
- 顺时针旋转校正螺丝时为旋紧。

- (1) 用配备的六角扳手对准上、下校正螺
- (2) 轻轻松开上(下)校正螺丝,以同样 程度旋紧下(上)校正螺丝,至使激光 点移至校正靶的水平线上。
- 9. 当激光点位于如图所示的右半部(左半部) 区域内时:
 - (1) 用配备的六角扳手调整左、右校正螺 44.
 - (2) 轻轻松开右(左)校正螺丝,以同样 程度旋紧左(右)校正螺丝,至使激光 点移至校正靶的中心点上。
- 10. 边旋转仪器照准部边检查激光点位置是 否始终位于校正靶中心。需要时重复上
- 11. 旋上激光对中器校正护盖。


• 旋转校正螺丝时激光点的移动方向如下图所示。

校正螺丝



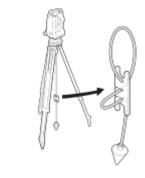
36. 标准配置与选购附件

36.1 标准配置

购买仪器时请确认下列配件是否齐全。

1	CX 主机1	(10)	校正针2
2	机载电池 BDC701	11)	六角扳手(1.5mm)1
3	电池充电器 CDC68A1	12	清洁布1
4	电源电缆	13	快速入门指南1
	EDC113A/113B/113C1	14)	安全使用注意事项1
(5)	物镜盖1	15	U 盘(含电子版使用说明书)1
6	物镜遮光罩1	16	仪器箱1
7	工具袋1		背带1
8	螺丝刀1	(18)	出口限制卡(务必阅读)1
9	镜头刷1		

- * 请将 U 盘提供的 PDF 格式电子版《仪器使用说明书》备份至计算机,阅读时需从 Adobe 官方网站下载并安装 Adobe Reader 软件。
- * 建议使用标配的 U 盘进行仪器与计算机间的数据交换,TOPCON 集团无法担保其他 U 盘的正常安全使用。


36.2 选购附件

以下介绍的是仪器的部分选购附件。

🕝 棱镜系统和电源系统附件:"36.3 棱镜系统"和"36.4 电源系统"

を乗・

在无风或微风天气情况下,垂球可用于仪器的对中。使用时先松开垂球线,然后将 其挂在三脚架中心螺旋的挂钩上,并按右 图所示方法用线夹片调节线长。

・管式罗盘(CP7)

使用时,将 CP7 插入仪器提柄上的管式罗盘插槽,松开罗盘指针制动螺丝,然后旋转仪器照准部至使罗盘指针平分指标线,此时左盘位望远镜指向磁北方向。使用完毕后,固紧罗盘指针制动螺丝,取下并放入仪器箱内。

 测站附近的磁性或金属物体均会对管式 罗盘产生影响,使得其指向偏离真正的 磁北方向,因此在进行基线测量时不要 使用管式罗盘进行磁北方向的确定。

・弯管目镜(Model 10)

弯管目镜用于天顶距很小的目标或仪器周 围空间狭小场合下的观测。

使用前先卸下仪器的提柄, 旋下望远镜目 镜后换上弯管目镜。

☞ 提柄装卸方法: "4.1 仪器部件名称"

·阳光滤色镜(Model 6)

当对着太阳进行观测时,为避免阳光造成 观测人员视力伤害和仪器损坏,需在望远镜的物镜上安装专用的翻转式阳光滤色镜进行防护。

• 通讯电缆

通讯电缆用于连接仪器与计算机进行数据的通讯。

电 缆	说明
DOC210	针数和信号水平: RS-232C 兼容
DOC211(Y 形)	1
DOC212(Y 形)	D-sub 按关: 9 和(母)

Note

• 选用 Y 形电缆, 仪器可同时连接 RS-232C 进行数据通讯和外部电池。

36.3 棱镜系统

以下介绍的所列部件均属选购件。

- 使用带觇牌的棱镜进行距离和角度测量时,要使棱镜朝向仪器并精确照准觇牌中心。
- •不同的棱镜具有不同的棱镜常数改正值,更换棱镜时应注意设置正确的棱镜常数改正值。

• 棱镜系统(AP 系列)

作业时请使用与 CX 配套的棱镜系统(如图右)。索佳的反射棱镜及其附件均采用标准螺纹生产,组合起来使用十分方便。

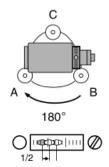
Note

有关索佳棱镜及其他反射标靶的详细资料可向索佳特约经销商索取。

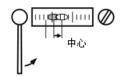
• 仪器高适配器(AP41)

用于调节仪器或目标的高度。

• 在使用本系列仪器时,确认适配器的仪器高显示窗内的数字为"236"mm。



适配器管水准器检校步骤


- 1. 将适配器装入基座。
- 2. 整平仪器并观察管水准器气泡的位置。
- 3. 将适配器旋转 180° 并检查水准器气泡的 位置。

如果气泡保持居中则无需校正;若气泡偏 离则按下列步骤进行校正。

4. 用脚螺旋 C 调回气泡偏离量的一半。

5. 用校正针转动水准器校正螺丝调回气泡偏离量的另一半,使气泡居中。 转动校正螺丝时,气泡移动方向与校正螺 丝旋转方向相同。

- 6. 重复上述步骤至使照准部转至任何方向上 时水准器气泡均保持居中。
 若无法通过检校使气泡居中,请与索佳客服中心联系。
- 按检校光学对中器同样的方法对仪器高适配器的光学对中器进行检校。

"35.6 光学对中器检校"

36.4 电源系统

CX 可使用下列电源系统组合。

- 在使用电池及其充电器前,请仔细阅读使用说明书中的有关内容。
- 仪器严禁使用下列电源系统以外的其他电源组合, 否则会损坏仪器。

注有"*"号的为标准配件,其他的为选购件。

Note

专用的电源电缆标配置会因仪器使用地国家或地区的不同而有所差别,详细情况请咨询当地经销商。

外部电源的使用

- 使用外部电池时,应将机载电池 BDC70 装上以保持机体的平衡。
- •使用汽车点烟器口供电应在发动机运转状态下进行,并确认汽车点烟器的输出电压为 12V DC 目负极已接地。
- 使用 12V DC 电池供电时,应将专用电源电缆 EDC213 的红、黑色夹子分别与电池的正、 负极相接;使用汽车电池供电时应在发动机停止运转状态下进行。
- 使用 EDC115 供电应在发动机运转状态下进行,并将 12V DC 电池负极接地。
- 使用 EDC213 供电应在发动机停止运转状态下进行,并将 EDC213 的红、黑色夹子分别与电池的正、负极相接。

37. 技术指标

除特别说明外,所列技术指标适用于 CX 系列各型号。

望远镜

镜筒长度 150mm

物镜孔径 **45mm**(EDM:50mm)

放大倍率 30× 成像 正像 分辨率 2.8"

视场角 1°30′(26m/1000m)

最短焦距 1.4m 调焦环 单速 分划板照明 5 级亮度

测角部

度盘类型 绝对编码度盘

检测方式 对径 (CX-102LN)

单侧 (CX-105LN)

IACS 角度自校准系统 仅 CX-102LN 内置

角度单位 度/新度/密位 可选

最小显示 1"/5" 可选

测角精度 2"(CX-102LN)

5" (CX-105LN) (ISO 17123-3:2001)

测量时间小于 0.5 秒视准差改正开/关 可选

角度类型 水平角: 右角/左角 可选

垂直角: 天顶 0/水平 0/水平 0±90°/% 可选

补偿器类型 液体双轴倾斜传感器

最小显示 1" 补偿范围 ±6'

倾斜自动补偿 ON(H,V)/ON(V)/ OFF 可选

补偿常数 可改变

测距部

测距方式 抽样法测量系统

脉冲激光二极管 810nm 信号源

1级激光

(使用下列反射棱镜,一般气象条件*1) 测距范围

单AP01AR棱镜^{*2}

1.4 ~ 4000m

OR1PA杆式棱镜*2

1.4 ~ 1000m

无棱镜(白面)*3*6

1.5 ~ 250m

远程无棱镜(白面)*4*6 5 ~ 2000m

远程无棱镜(灰面)*5*6 5 ~ 700m

最小显示

0.001m (精测/速测)

0.01m (跟踪测)

距离单位

米/英尺/英寸 可选

0.01m (跟踪测量)

斜距最大显示

9999m (棱镜)

999m (无棱镜)

2010m (远程无棱镜)

距离单位

米/英尺/英寸 可选

测距精度

(D 为距离观测值, mm 单位)

棱镜*2

精测: ±(2+2ppm×D)mm(1.4 ~ 3000m)

速测: ±(7+2ppm×D)mm (1.4 ~ 3000m)

无棱镜(白面)*3*6

精测: ±5mm (1.5 ~ 250m)

速测: ±10mm (1.5 ~ 250m)

远程无棱镜(白面)*4*6精测: ±(10+10ppm×D)mm(5 ~ 500m)

 $\pm (10+23ppm \times D)mm (500 \sim 2000m)$

速测: ±(20+10ppm×D)mm(5 ~ 500m)

 $\pm (20+23ppm \times D)mm (500 \sim 2000m)$

测量模式

精测(单次/重复/均值)/速测(单次/重复)/跟踪 可选

测量时间*1*7

棱镜/无棱镜模式 精测: 4.0 秒/初次+3.0 秒/次

速测: 2.5 秒/初次+0.5 秒/次

跟踪: 2.5 秒/初次+0.3 秒/次

37.技术指标

远程无棱镜模式 精测: 8.0 秒/初次+4.5 秒/次

速测: 8.0 秒/初次+3.0 秒/次

跟踪: 7.0 秒/初次+0.4 秒/次

气象改正 温度输入范围: -35 ~ 60 ℃(每挡 0.1℃)

气压输入范围: 500 ~ 1400 hPa(每挡 1hPa)

375 ~ 1050 mmHg(每挡 1mmHg)

ppm 输入范围: -499 ~ 499 ppm(每挡 1ppm)

棱镜常数改正值 -99 ~ 99 mm(每挡 1mm), 无棱镜测量时固定为 "0"

曲率与折射改正 No/Yes(K=0.142/0.20) 可选

 比例因子设置
 0.5 ~ 2.0

 水准面改正
 No/Yes 可选

*1: 薄雾、能见度约 20 公里、晴天、大气有轻微抖动。

*2: 棱镜面正对仪器时的测试结果。

*3: 采用反射率为 90%的 Kodak 灰卡白面、被测物体表面亮度小于 20000lx 时的测试结果。

*4: 采用反射率为 90%的 Kodak 灰卡白面、被测物体表面亮度小于 30000lx 时的测试结果。

*5: 采用反射率为 18%的 Kodak 灰卡灰面、被测物体表面亮度小于 30000lx 时的测试结果。

*6: 无棱镜测量的范围和精度会因测量目标的反射率、气象条件和所处环境不同而不同。

*7: 斜距测量、对测量值不进行改正、EDM 处于最佳接收状态时的测试结果。

内存

容量 约 10000 点数据(1M)

外存

U 盘 可达 8G

数据传输

数据输入输出 RS232C 兼容串口

USB 口 USB 2.0 版

蓝牙无线通讯(2)*8

传输方式 FHSS

调制 GFSK(高斯滤波频移键控)

频带 2.402 ~ 2.48GHz

蓝牙协议 SPP. DUN

等级 1级

工作范围 约 300m(通视、无来往车辆遮挡、无雨、无电磁波干扰环境下)

认证 Yes/No 可选

*8: 蓝牙功能内置与否取决于仪器销售地国家或地区的电信法规,详细情况请联系当地 经销商。

电源系统

机载电池 可充锂电池 BDC70

工作时间 (20℃、精测间隔 1 次/30 秒)

角距同测 约 6 小时(BDC70 电池)

约7小时(BDC60/60A外部电池,选配)

约 14.5 小时(BDC61A 外部电池,选配)

电量指示 4级

自动关机 5 种方式(5 分钟/10 分钟/15 分钟/30 分钟/手工) 可选

外部电源 6.7~12V

充电时间 约 5.5 小时(25°C、使用 CDC68A 充电器)

电池 BDC70

标称电压 **7.2V**

电容量 5240mAh

尺寸 40(宽)×70(长)×40(高)

重量 约 197g

充电器 CDC68A

输入电压 110~240VAC

充电时间 BDC70: 约 5.5 小时(温度过高或过低时充电时间会延长)

充电温度 0~40℃

37.技术指标

储存温度 -20~65℃

尺寸 94(宽)×102(长)×36(高)

重量 约 170g

其他

显示器 192×80 点阵带背光液晶图形显示器

CX-102LN: 双面显示器

CX-105LN: 单面显示器

操作面板 25 键背光式键盘

自动关机 5 种方式 可选

激光指向 红色激光二极管 690nm, 2 级激光, 打开或关闭 可选

水准器灵敏度

圆水准器 10′/2mm

电子水准器

图形显示范围 6'(内圆) 数字显示范围 ±6'30"

光学对中器

 成像
 正像

 放大倍率
 3×

 最短焦距
 0.3m

激光对中器(选配)

信号源 红色激光二极管 635±10nm 对中精度 小于 1mm(三脚架头高度 1.3m)

光斑直径 小于 3mm

激光亮度 5级

自动关闭 5 分钟后自动关闭

工作温度(无冷凝) - 20 ~ 50 ℃

储存温度 (无冷凝) -30 ~60 ℃

防尘防水等级 IP66 (IEC 60529: 2001)

仪器高 236mm+5/-3mm(基座底部起算), 192.5mm(基座顶部起算)

主机尺寸(含提柄) 191(宽)×181(长)×358(高)(CX-102LN)

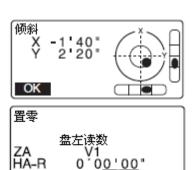
191(宽)×174(长)×358(高)(CX-105LN)

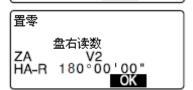
主机重量 5.6kg(含提柄和电池)

38. 附加说明

38.1 双盘位照准设置垂直度盘指标

仪器经精确校正后其垂直度盘指标差是十分微小的。在进行测角精度要求特别高的测量 时,可按下述步骤设置垂直度盘的指标来消除度盘指标差的影响。


• 仪器关机后,采用此方法设置的度盘指标将失效,每次开机后需重新设置。


双盘位照准设置垂直度盘指标步骤

- 1. 在<设置>菜单界面下选取"观测条件"进入观测条件设置界面,将"手设竖盘"选项设置为"Yes"。
- 2. 返回测量模式界面,此时屏幕显示如右图 所示图形水准器界面。
- 3. 仔细整平仪器后按[**OK**]键。 垂直角 "V1"显示在"盘左读数"下方。
- 4. 左盘位精确照准水平方向上约30m远处一 清晰目标。

按[**OK**]键读取读数,垂直角"V2"显示在"盘右读数"下方。

5. 松开水平制动钮,旋转仪器照准部 180°, 右盘位精确照准同一目标。 按[**OK**]键读取读数完成垂直度盘指标的设 置,屏幕上显示出水平角和垂直角值。

OK

38.2 大气折光与地球曲率改正

仪器在距离测量时可进行大气折光与地球曲率 (两差)改正。

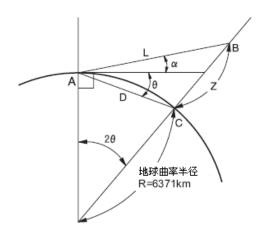
距离计算公式

在顾及大气折光与地球曲率改正时,仪器采用下列公式进行平距和垂距的计算:

平距 D = AC(α) 垂距 Z = BC(α)

D = L{ $\cos \alpha$ - $(2\theta - \gamma) \sin \alpha$ } Z = L{ $\sin \alpha$ + $(\theta - \gamma) \cos \alpha$ }

 θ = L·cosα/2R
 : 地球曲率改正项

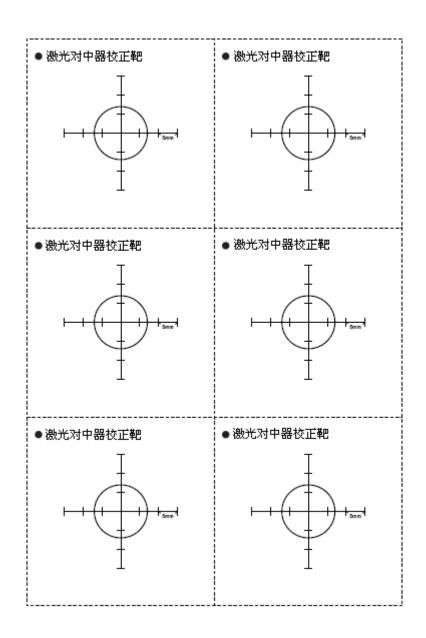

 g = K·Lcosα/2R
 : 大气折光改正项

 K = 0.14 or 0.2
 : 折射系数

 R = 6371km
 : 地球曲率半径

 a
 : 高度角

 L
 : 斜距



厂 折射系数 "K"值的设置: "33.1 仪器参数设置"

39. 管理法规

用户必须确保仪器的使用符合使用地国家的相关法律法规。

国家或地区	行政机构	条款内容							
中国	无线电管理	第十三条 ■使用频率: 2.4 - 2.4835 GHz ■使用频率: 2.4 - 2.4835 GHz ■等效全向辐射功率 (EIRP): 天线增益<10dBi 时: ≤100 nW 或≤20 dBn ■最大功率:蓄密度: 天线增益<10dBi 时: ≤20 dBn / MHz(EIRP) ■数類容限: 20 ppn ■带外发射功率(在 2.4-2.4835GHz 頻段以外) ≤-80 dBn / Hz (EIRP) ■杂散发射(辐射)功率(对应载波 ±2.5 倍信道带宽以外): ≤-36 dBn / 100 kHz (30 - 1000 MHz) ≤-33 dBn / 100 kHz (3.4 - 2.4835 GHz) ≤-40 dBn / 1 MHz (3.4 - 3.53 GHz) ≤-40 dBn / 1 MHz (3.25 - 5.85 GHz) ≤-40 dBn / 1 MHz (其它 1 - 12.75 GHz) 2. 不得擅自更改发射频率、加大发射功率(包括额外加装射频功率放大器),不得擅自外接天线或改用其它发射天线: 3. 使用时不得对各种合法的无线电通信业务产生有害干扰: 一旦发现有干扰现象时,应立即停止使用,并采取措施消除干扰后方可继续使用; 4. 使用微功率无线电设备,必须忍受各种无线电业务的干扰或工业、科学及医疗应用设备的辐射干扰; 5. 不得在飞机和机场附近使用。							
		< 产品中有毒有害物质或元素的名称混合量 > 来自有妄物质直元素							
		部件名称	10	汞	初毒有害	物质或元素 六价铬	多溴联苯	多溴二苯醚	
			(Pb)	(Hg)	(Cq)	(Cr(VI))	(P88)	(PBDE)	
		望远镜部位	×	0	×	×	0	0	
		(除了印纹主板) 主机托架部							
		(除了印纹主板)	×	0	×	×	0	0	
		主极部位	×	0	×	×	0	0	
		星示器	×	0	0	0	0	0	
		印纹主板 其他(电源、充电器、盒	×	0	×	×	-	0	
48	17 J# /0 JA	子等)	×	0	0	0	0	0	
中国	环境保护	○: 表示该有音有被矩后在这部特所有均隔材料中的企业均在电子信息产品中有音有被拒絕的限量图本标准规定的限量图求 《SJ/T11393-26001以下 ※ 表示该有音有被矩距型少在该部件的某一均振材料中的企量超出电子信息产品中有音有被拒絕的限量图本标准规定的限量图本 《SJ/T11393-26001 This information is applicable for People's Republic of Chris only. ① 阿保德用隔限的记录模据《电子信息产品的编记》 原用于中国家的情况的一个情况的一个情况,但是是是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个							

CXH 编译 2015 年 12 月于武汉

SOKKIA

拓普康索佳 (上海) 科贸有限公司

北京运营中心

地址: 北京市朝阳区东四环中路82号

金长安大厦 A-1003 电话: 010-8776 2600 传真: 010-8776 2601 网址: www.sokkiachina.cn

上海服务中心

地址: 上海自由贸易试验区港澳路 389

号 1 幢五层 E 区 电话: 021-63541844 传真: 021-68910391

武汉技术中心

地址: 武汉市武昌区武珞路 456 号新

时代商务中心 (中建三局) 主楼

2308室 事任: 027-87646

电话: 027-87646473

